1
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
2
|
Mosajakhah H, Shanehbandi D, Ahmadpour E, Mahami-Oskouei M, Sadeghi K, Spotin A. MicroRNA-145 enhances lung cancer cell progression after exposure to lyophilized fertile hydatid cyst fluid of Echinococcus granulosus sensu stricto. Exp Parasitol 2024; 265:108829. [PMID: 39179144 DOI: 10.1016/j.exppara.2024.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
There is increasing evidence that the secretory/excretory antigens of the larval stage of Echinococcus granulosus can induce both anticancer and oncogenic effects between parasite-derived metabolites and various cancer cells. The dual role of miR-145 as either a tumor suppressor or oncogene has already been reported in cancer. However, the mechanism by which miR-145 induces apoptosis in lung cancer cells treated with hydatid cyst fluid (HCF) remains unclear. The fertile HCF was obtained from sheep, purified and lyophilized. H1299 human lung cancer cells were then cultured into two groups: HCF-treated H1299 lung cancer cells and untreated H1299 cancer cells as control cells. Cell viability was assessed using MTT assay to evaluate the effects of HCF on the H1299 cells. Caspase-3 activity was assessed by fluorometric assay. In addition, mRNA expression levels of VGEF, vimentin, caspase-3, miRNA-145, Bax and Bcl-2 genes were quantified by real-time PCR. A scratch test was also performed to assess the effects of HCF on cell migration. The MTT assay revealed that the growth of H1299 cells increased when treated with 60 μg/mL of fertile HCF for 24 h. The fold change of caspase-3, miRNA-145, Bax/Bcl-2 ratio and caspase-3 activity was lower in HCF-treated H1299 cells compared to the control cell. The fold change in VGEF and vimentin gene expression was higher in the HCF-treated H1299 cells than in the control cell. The scratch test results showed that H1299 cell mobility increased 24 and 48 h after exposure to HCF. Our results suggest that the downregulation of miR-145 in HCF-treated H1299 cells may play a role as a possible oncogenic regulator of lung cancer growth. To confirm this assumption, further studies are required to evaluate the microRNA profile and effective oncogenes in vivo.
Collapse
Affiliation(s)
- Hosein Mosajakhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Mahami-Oskouei
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Sousa LRD, Duarte THC, Xavier VF, das Mercês AC, Vieira GM, Martins MD, Carneiro CM, dos Santos VMR, dos Santos ODH, Vieira PMDA. Benznidazole-Loaded Polymeric Nanoparticles for Oral Chemotherapeutic Treatment of Chagas Disease. Pharmaceutics 2024; 16:800. [PMID: 38931921 PMCID: PMC11207087 DOI: 10.3390/pharmaceutics16060800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chagas disease (CD) is a worldwide public health problem. Benznidazole (BZ) is the drug used to treat it. However, in its commercial formulation, it has significant side effects and is less effective in the chronic phase of the infection. The development of particulate systems containing BZ is therefore being promoted. The objective of this investigation was to develop polymeric nanoparticles loaded with BZ and examine their trypanocidal impact in vitro. Two formulas (BNP1 and BNP2) were produced through double emulsification and freeze drying. Subsequent to physicochemical and morphological assessment, both formulations exhibited adequate yield, average particle diameter, and zeta potential for oral administration. Cell viability was assessed in H9C2 and RAW 264.7 cells in vitro, revealing no cytotoxicity in cardiomyocytes or detrimental effects in macrophages at specific concentrations. BNP1 and BNP2 enhanced the effect of BZ within 48 h using a treatment of 3.90 μg/mL. The formulations notably improved NO reduction, particularly BNP2. The findings imply that the compositions are suitable for preclinical research, underscoring their potential as substitutes for treating CD. This study aids the quest for new BZ formulations, which are essential in light of the disregard for the treatment of CD and the unfavorable effects associated with its commercial product.
Collapse
Affiliation(s)
- Lucas Resende Dutra Sousa
- Laboratório de Fitotecnologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.); (O.D.H.d.S.)
| | - Thays Helena Chaves Duarte
- Laboratório de Morfopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (T.H.C.D.); (A.C.d.M.)
| | - Viviane Flores Xavier
- Laboratório de Fitotecnologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.); (O.D.H.d.S.)
| | - Aline Coelho das Mercês
- Laboratório de Morfopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (T.H.C.D.); (A.C.d.M.)
| | - Gabriel Maia Vieira
- Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, MG, Brazil; (G.M.V.); (M.D.M.)
| | - Maximiliano Delany Martins
- Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte 31270-901, MG, Brazil; (G.M.V.); (M.D.M.)
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Viviane Martins Rebello dos Santos
- Laboratório de Produtos Naturais e de Síntese Orgânica, Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Orlando David Henrique dos Santos
- Laboratório de Fitotecnologia, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (V.F.X.); (O.D.H.d.S.)
| | - Paula Melo de Abreu Vieira
- Laboratório de Morfopatologia, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (T.H.C.D.); (A.C.d.M.)
| |
Collapse
|
4
|
Ribeiro HG, Galdino OA, de Souza KSC, Rosa Neta AP, Lin-Wang HT, Cunha-Neto E, de Rezende AA, Silbiger VN. Unraveling the role of miRNAs as biomarkers in Chagas cardiomyopathy: Insights into molecular pathophysiology. PLoS Negl Trop Dis 2024; 18:e0011865. [PMID: 38300899 PMCID: PMC10833550 DOI: 10.1371/journal.pntd.0011865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Chagas cardiomyopathy (ChCM) is a severe form of Chagas disease and a major cause of cardiovascular morbidity and mortality. The dysregulation of the immune response leads to cardiac remodeling and functional disruptions, resulting in life-threatening complications. Conventional diagnostic methods have limitations, and therapeutic response evaluation is challenging. MicroRNAs (miRNAs), important regulators of gene expression, show potential as biomarkers for diagnosis and prognosis. AIM This review aims to summarize experimental findings on miRNA expression in ChCM and explore the potential of these miRNAs as biomarkers of Chagas disease. METHODS The search was conducted in the US National Library of Medicine MEDLINE/PubMed public database using the terms "Chagas cardiomyopathy" OR "Chagas disease" AND "microRNA" OR "miRNA" OR "miR." Additionally, bioinformatics analysis was performed to investigate miRNA-target interactions and explore enrichment pathways of gene ontology biological processes and molecular functions. RESULTS The miR-21, miR-146b, miR-146a, and miR-155 consistently exhibited up-regulation, whereas miR-145 was down-regulated in ChCM. These specific miRNAs have been linked to fibrosis, immune response, and inflammatory processes in heart tissue. Moreover, the findings from various studies indicate that these miRNAs have the potential as biomarkers for the disease and could be targeted in therapeutic strategies for ChCM. CONCLUSION In this review, we point out miR-21, miR-146b, miR-146a, miR-155, and miR-145-5p role in the complex mechanisms of ChCM. These miRNAs have been shown as potential biomarkers for precise diagnosis, reliable prognostic evaluation, and effective treatment strategies in the ChCM.
Collapse
Affiliation(s)
- Heriks Gomes Ribeiro
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ony Araújo Galdino
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Antonia Pereira Rosa Neta
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hui Tzu Lin-Wang
- Molecular Biology Laboratory, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Villar SR, Herreros-Cabello A, Callejas-Hernández F, Maza MC, Del Moral-Salmoral J, Gómez-Montes M, Rodríguez-Angulo HO, Carrillo I, Górgolas M, Bosch-Nicolau P, Molina I, Pérez-Molina JA, Monge-Maillo B, Bottasso OA, Beloscar J, Pérez AR, Fresno M, Gironès N. Discovery of circulating miRNAs as biomarkers of chronic Chagas heart disease via a small RNA-Seq approach. Sci Rep 2024; 14:1187. [PMID: 38216639 PMCID: PMC10786931 DOI: 10.1038/s41598-024-51487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Chagas disease affects approximately 7 million people worldwide in Latin America and is a neglected tropical disease. Twenty to thirty percent of chronically infected patients develop chronic Chagas cardiomyopathy decades after acute infection. Identifying biomarkers of Chagas disease progression is necessary to develop better therapeutic and preventive strategies. Circulating microRNAs are increasingly reliable biomarkers of disease and therapeutic targets. To identify new circulating microRNAs for Chagas disease, we performed exploratory small RNA sequencing from the plasma of patients and performed de novo miRNA prediction, identifying potential new microRNAs. The levels of the new microRNAs temporarily named miR-Contig-1519 and miR-Contig-3244 and microRNAs that are biomarkers for nonchagasic cardiomyopathies, such as miR-148a-3p and miR-224-5p, were validated by quantitative reverse transcription. We found a specific circulating microRNA signature defined by low miR-Contig-3244, miR-Contig-1519, and miR-148a-3 levels but high miR-224-5p levels for patients with chronic Chagas disease. Finally, we predicted in silico that these altered circulating microRNAs could affect the expression of target genes involved in different cellular pathways and biological processes, which we will explore in the future.
Collapse
Affiliation(s)
- Silvina R Villar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Alfonso Herreros-Cabello
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Francisco Callejas-Hernández
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - María C Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Javier Del Moral-Salmoral
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Mario Gómez-Montes
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | - Irene Carrillo
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Górgolas
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau Bosch-Nicolau
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Molina
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A Pérez-Molina
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Monge-Maillo
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar A Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Juan Beloscar
- Cátedra y Servicio de Cardiología, Sección Chagas, Hospital Provincial del Centenario, Rosario, Argentina
| | - Ana R Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
6
|
Sousa LRD, Amparo TR, de Souza GHB, Ferraz AT, Fonseca KDS, de Azevedo AS, do Nascimento AM, Andrade ÂL, Seibert JB, Valverde TM, Braga SFP, Vieira PMDA, dos Santos VMR. Anti- Trypanosoma cruzi Potential of Vestitol Isolated from Lyophilized Red Propolis. Molecules 2023; 28:7812. [PMID: 38067542 PMCID: PMC10708512 DOI: 10.3390/molecules28237812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 μg/mL and 31.25 μg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.
Collapse
Affiliation(s)
- Lucas Resende Dutra Sousa
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Tatiane Roquete Amparo
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Gustavo Henrique Bianco de Souza
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (T.R.A.); (G.H.B.d.S.)
| | - Aline Tonhela Ferraz
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Kátia da Silva Fonseca
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Amanda Scofield de Azevedo
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Andréa Mendes do Nascimento
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Ângela Leão Andrade
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| | - Janaína Brandão Seibert
- Natural Products Laboratory, Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Sao Carlos 13565-905, SP, Brazil;
| | - Thalita Marcolan Valverde
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Saulo Fehelberg Pinto Braga
- Medicinal Chemistry and Bioassays Laboratory, School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Center for Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.T.F.); (K.d.S.F.)
| | - Viviane Martins Rebello dos Santos
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (A.S.d.A.); (A.M.d.N.); (Â.L.A.)
| |
Collapse
|
7
|
Rego N, Libisch MG, Rovira C, Tosar JP, Robello C. Comparative microRNA profiling of Trypanosoma cruzi infected human cells. Front Cell Infect Microbiol 2023; 13:1187375. [PMID: 37424776 PMCID: PMC10322668 DOI: 10.3389/fcimb.2023.1187375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Trypanosoma cruzi, the causative agent of Chagas disease, can infect almost any nucleated cell in the mammalian host. Although previous studies have described the transcriptomic changes that occur in host cells during parasite infection, the understanding of the role of post-transcriptional regulation in this process is limited. MicroRNAs, a class of short non-coding RNAs, are key players in regulating gene expression at the post-transcriptional level, and their involvement in the host-T. cruzi interplay is a growing area of research. However, to our knowledge, there are no comparative studies on the microRNA changes that occur in different cell types in response to T. cruzi infection. Methods and results Here we investigated microRNA changes in epithelial cells, cardiomyocytes and macrophages infected with T. cruzi for 24 hours, using small RNA sequencing followed by careful bioinformatics analysis. We show that, although microRNAs are highly cell type-specific, a signature of three microRNAs -miR-146a, miR-708 and miR-1246, emerges as consistently responsive to T. cruzi infection across representative human cell types. T. cruzi lacks canonical microRNA-induced silencing mechanisms and we confirm that it does not produce any small RNA that mimics known host microRNAs. We found that macrophages show a broad response to parasite infection, while microRNA changes in epithelial and cardiomyocytes are modest. Complementary data indicated that cardiomyocyte response may be greater at early time points of infection. Conclusions Our findings emphasize the significance of considering microRNA changes at the cellular level and complement previous studies conducted at higher organizational levels, such as heart samples. While miR-146a has been previously implicated in T. cruzi infection, similarly to its involvement in many other immunological responses, miR-1246 and miR-708 are demonstrated here for the first time. Given their expression in multiple cell types, we anticipate our work as a starting point for future investigations into their role in the post-transcriptional regulation of T. cruzi infected cells and their potential as biomarkers for Chagas disease.
Collapse
Affiliation(s)
- Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Juan Pablo Tosar
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Silva Grijó Farani P, Iandra da Silva Ferreira B, Begum K, Vilar-Pereira G, Pereira IR, Fernández-Figueroa EA, Cardenas-Ovando RA, Almeida IC, Roy S, Lannes-Vieira J, Moreira OC. Treatment with benznidazole and pentoxifylline regulates microRNA transcriptomic profile in a murine model of Chagas chronic cardiomyopathy. PLoS Negl Trop Dis 2023; 17:e0011223. [PMID: 36972298 PMCID: PMC10121046 DOI: 10.1371/journal.pntd.0011223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) is one of the leading causes of morbidity and mortality due to cardiovascular disorders in endemic areas of Chagas disease (CD), a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. CCC is characterized by parasite persistence and inflammatory response in the heart tissue, which occur parallel to microRNA (miRNA) alterations. Here, we investigated the miRNA transcriptome profiling in the cardiac tissue of chronically T. cruzi-infected mice treated with a suboptimal dose of benznidazole (Bz), the immunomodulator pentoxifylline alone (PTX), or the combination of both (Bz+PTX), following the CCC onset. At 150 days post-infection, Bz, PTX, and Bz+PTX treatment regimens improved electrocardiographic alterations, reducing the percentage of mice afflicted by sinus arrhythmia and second-degree atrioventricular block (AVB2) when compared with the vehicle-treated animals. miRNA Transcriptome profiling revealed considerable changes in the differential expression of miRNAs in the Bz and Bz+PTX treatment groups compared with the control (infected, vehicle-treated) group. The latter showed pathways related to organismal abnormalities, cellular development, skeletal muscle development, cardiac enlargement, and fibrosis, likely associated with CCC. Bz-Treated mice exhibited 68 differentially expressed miRNAs related to signaling pathways like cell cycle, cell death and survival, tissue morphology, and connective tissue function. Finally, the Bz+PTX-treated group revealed 58 differentially expressed miRNAs associated with key signaling pathways related to cellular growth and proliferation, tissue development, cardiac fibrosis, damage, and necrosis/cell death. The T. cruzi-induced upregulation of miR-146b-5p, previously shown in acutely infected mice and in vitro T. cruzi-infected cardiomyocytes, was reversed upon Bz and Bz+PTX treatment regimens when further experimentally validated. Our results further our understanding of molecular pathways related to CCC progression and evaluation of treatment response. Moreover, the differentially expressed miRNAs may serve as drug targets, associated molecular therapy, or biomarkers of treatment outcomes.
Collapse
Affiliation(s)
- Priscila Silva Grijó Farani
- Real-Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Beatriz Iandra da Silva Ferreira
- Real-Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Khodeza Begum
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Glaucia Vilar-Pereira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabela Resende Pereira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Edith A. Fernández-Figueroa
- Computational and Integrative Genomics, Instituto Nacional de Medicina Genómica, Arenal Tepepan, Mexico City, Mexico
| | | | - Igor C. Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sourav Roy
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Real-Time PCR Platform RPT09A, Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
9
|
Fiuza LFDA, Batista DGJ, Girão RD, Hulpia F, Finamore-Araújo P, Aldfer MM, Elmahallawy EK, De Koning HP, Moreira O, Van Calenbergh S, Soeiro MDNC. Phenotypic Evaluation of Nucleoside Analogues against Trypanosoma cruzi Infection: In Vitro and In Vivo Approaches. Molecules 2022; 27:molecules27228087. [PMID: 36432189 PMCID: PMC9695592 DOI: 10.3390/molecules27228087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is a serious public health problem. Current treatment is restricted to two drugs, benznidazole and nifurtimox, displaying serious efficacy and safety drawbacks. Nucleoside analogues represent a promising alternative as protozoans do not biosynthesize purines and rely on purine salvage from the hosts. Protozoan transporters often present different substrate specificities from mammalian transporters, justifying the exploration of nucleoside analogues as therapeutic agents. Previous reports identified nucleosides with potent trypanocidal activity; therefore, two 7-derivatized tubercidins (FH11706, FH10714) and a 3′-deoxytubercidin (FH8513) were assayed against T. cruzi. They were highly potent and selective, and the uptake of the tubercidin analogues appeared to be mediated by the nucleoside transporter TcrNT2. At 10 μM, the analogues reduced parasitemia >90% in 2D and 3D cardiac cultures. The washout assays showed that FH10714 sterilized the infected cultures. Given orally, the compounds did not induce noticeable mouse toxicity (50 mg/kg), suppressed the parasitemia of T. cruzi-infected Swiss mice (25 mg/kg, 5 days) and presented DNA amplification below the limit of detection. These findings justify further studies with longer treatment regimens, as well as evaluations in combination with nitro drugs, aiming to identify more effective and safer therapies for Chagas disease.
Collapse
Affiliation(s)
- Ludmila F. de A. Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Roberson D. Girão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Paula Finamore-Araújo
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Ehab Kotb Elmahallawy
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Otacílio Moreira
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
- Correspondence: ; Tel.: +55-21-2562-1368
| |
Collapse
|