1
|
Ghibaudo V, Juventin M, Buonviso N, Peter-Derex L. The timing of sleep spindles is modulated by the respiratory cycle in humans. Clin Neurophysiol 2024; 166:252-261. [PMID: 39030100 DOI: 10.1016/j.clinph.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Coupling of sleep spindles with cortical slow waves and hippocampus sharp-waves ripples is crucial for sleep-related memory consolidation. Recent literature evidenced that nasal respiration modulates neural activity in large-scale brain networks. In rodents, this respiratory drive strongly varies according to vigilance states. Whether sleep oscillations are also respiration-modulated in humans remains open. In this work, we investigated the influence of breathing on sleep spindles during non-rapid-eye-movement sleep in humans. METHODS Full night polysomnography of twenty healthy participants were analysed. Spindles and slow waves were automatically detected during N2 and N3 stages. Spindle-related sigma power as well as spindle and slow wave events were analysed according to the respiratory phase. RESULTS We found a significant coupling between both slow and fast spindles and the respiration cycle, with enhanced sigma activity and occurrence probability of spindles during the middle part of the expiration phase. A different coupling was observed for slow waves negative peaks which were rather distributed around the two respiration phase transitions. CONCLUSION Our findings suggest that breathing cycle influences the dynamics of brain activity during non-rapid-eye-movement sleep. SIGNIFICANCE This coupling may enable sleep spindles to synchronize with other sleep oscillations and facilitate information transfer between distributed brain networks.
Collapse
Affiliation(s)
- Valentin Ghibaudo
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France; Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.
| |
Collapse
|
2
|
Saltafossi M, Heck D, Kluger DS, Varga S. Common threads: Altered interoceptive processes across affective and anxiety disorders. J Affect Disord 2024; 369:244-254. [PMID: 39321982 DOI: 10.1016/j.jad.2024.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
There is growing attention towards atypical brain-body interactions and interoceptive processes and their potential role in psychiatric conditions, including affective and anxiety disorders. This paper aims to synthesize recent developments in this field. We present emerging explanatory models and focus on brain-body coupling and modulations of the underlying neurocircuitry that support the concept of a continuum of affective disorders. Grounded in theoretical frameworks like peripheral theories of emotion and predictive processing, we propose that altered interoceptive processes might represent transdiagnostic mechanisms that confer common vulnerability traits across multiple disorders. A deeper understanding of the interplay between bodily states and neural processing is essential for a holistic conceptualization of mental disorders.
Collapse
Affiliation(s)
- Martina Saltafossi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Detlef Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA; Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Somogy Varga
- Department of Philosophy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Leupin V, Britz J. Interoceptive signals shape the earliest markers and neural pathway to awareness at the visual threshold. Proc Natl Acad Sci U S A 2024; 121:e2311953121. [PMID: 39226342 PMCID: PMC11406234 DOI: 10.1073/pnas.2311953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/28/2024] [Indexed: 09/05/2024] Open
Abstract
Variations in interoceptive signals from the baroreceptors (BRs) across the cardiac and respiratory cycle can modulate cortical excitability and so affect awareness. It remains debated at what stages of processing they affect awareness-related event-related potentials (ERPs) in different sensory modalities. We investigated the influence of the cardiac (systole/diastole) and the respiratory (inhalation/exhalation) phase on awareness-related ERPs. Subjects discriminated visual threshold stimuli while their electroencephalogram, electrocardiogram, and respiration were simultaneously recorded. We compared ERPs and their intracranial generators for stimuli classified correctly with and without awareness as a function of the cardiac and respiratory phase. Cyclic variations of interoceptive signals from the BRs modulated both the earliest electrophysiological markers and the trajectory of brain activity when subjects became aware of the stimuli: an early sensory component (P1) was the earliest marker of awareness for low (diastole/inhalation) and a perceptual component (visual awareness negativity) for high (systole/exhalation) BR activity, indicating that BR signals interfere with the sensory processing of the visual input. Likewise, activity spread from the primary visceral cortex (posterior insula) to posterior parietal cortices during high and from associative interoceptive centers (anterior insula) to the prefrontal cortex during low BR activity. Consciousness is thereby resolved in cognitive/associative regions when BR is low and in perceptual centers when it is high. Our results suggest that cyclic fluctuations of BR signaling affect both the earliest markers of awareness and the brain processes underlying conscious awareness.
Collapse
Affiliation(s)
- Viviana Leupin
- Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
4
|
Johannknecht M, Schnitzler A, Lange J. Prestimulus Alpha Phase Modulates Visual Temporal Integration. eNeuro 2024; 11:ENEURO.0471-23.2024. [PMID: 39134415 PMCID: PMC11397504 DOI: 10.1523/eneuro.0471-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 09/14/2024] Open
Abstract
When presented shortly after another, discrete pictures are naturally perceived as continuous. The neuronal mechanism underlying such continuous or discrete perception is not well understood. While continuous alpha oscillations are a candidate for orchestrating such neuronal mechanisms, recent evidence is mixed. In this study, we investigated the influence of prestimulus alpha oscillation on visual temporal perception. Specifically, we were interested in whether prestimulus alpha phase modulates neuronal and perceptual processes underlying discrete or continuous perception. Participants had to report the location of a missing object in a visual temporal integration task, while simultaneously MEG data were recorded. Using source reconstruction, we evaluated local phase effects by contrasting phase angle values between correctly and incorrectly integrated trials. Our results show a phase opposition cluster between -0.8 and -0.5 s (relative to stimulus presentation) and between 6 and 20 Hz. These momentary phase angle values were correlated with behavioral performance and event-related potential amplitude. There was no evidence that frequency defined a window of temporal integration.
Collapse
Affiliation(s)
- Michelle Johannknecht
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
5
|
Goheen J, Wolman A, Angeletti LL, Wolff A, Anderson JAE, Northoff G. Dynamic mechanisms that couple the brain and breathing to the external environment. Commun Biol 2024; 7:938. [PMID: 39097670 PMCID: PMC11297933 DOI: 10.1038/s42003-024-06642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Brain and breathing activities are closely related. However, the exact neurophysiological mechanisms that couple the brain and breathing to stimuli in the external environment are not yet agreed upon. Our data support that synchronization and dynamic attunement are two key mechanisms that couple local brain activity and breathing to external periodic stimuli. First, we review the existing literature, which provides strong evidence for the synchronization of brain and breathing in terms of coherence, cross-frequency coupling and phase-based entrainment. Second, using EEG and breathing data, we show that both the lungs and localized brain activity at the Cz channel attune the temporal structure of their power spectra to the periodic structure of external auditory inputs. We highlight the role of dynamic attunement in playing a key role in coordinating the tripartite temporal alignment of localized brain activity, breathing and input dynamics across longer timescales like minutes. Overall, this perspective sheds light on potential mechanisms of brain-breathing coupling and its alignment to stimuli in the external environment.
Collapse
Affiliation(s)
- Josh Goheen
- Carleton University, Ottawa, Canada.
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada.
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
| | - Lorenzo Lucherini Angeletti
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
- University of Florence, Florence, Italy
| | | | | | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research associated with The University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Lewis-Healey E, Tagliazucchi E, Canales-Johnson A, Bekinschtein TA. Breathwork-induced psychedelic experiences modulate neural dynamics. Cereb Cortex 2024; 34:bhae347. [PMID: 39191666 DOI: 10.1093/cercor/bhae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Breathwork is an understudied school of practices involving intentional respiratory modulation to induce an altered state of consciousness (ASC). We simultaneously investigate the phenomenological and neural dynamics of breathwork by combining Temporal Experience Tracing, a quantitative methodology that preserves the temporal dynamics of subjective experience, with low-density portable EEG devices. Fourteen novice participants completed a course of up to 28 breathwork sessions-of 20, 40, or 60 min-in 28 days, yielding a neurophenomenological dataset of 301 breathwork sessions. Using hypothesis-driven and data-driven approaches, we found that "psychedelic-like" subjective experiences were associated with increased neural Lempel-Ziv complexity during breathwork. Exploratory analyses showed that the aperiodic exponent of the power spectral density-but not oscillatory alpha power-yielded similar neurophenomenological associations. Non-linear neural features, like complexity and the aperiodic exponent, neurally map both a multidimensional data-driven composite of positive experiences, and hypothesis-driven aspects of psychedelic-like experience states such as high bliss.
Collapse
Affiliation(s)
- Evan Lewis-Healey
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Enzo Tagliazucchi
- Consciousness, Culture and Complexity Lab, Department of Physics, Pabellón I, University of Buenos Aires, 1428, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, 7910000, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Provincia de Buenos Aires, Argentina
| | - Andres Canales-Johnson
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
- The Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, 3460000, Talca, Chile
| | - Tristan A Bekinschtein
- Cambridge Consciousness and Cognition Lab, Department of Psychology, Downing Place, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| |
Collapse
|
7
|
Zaccaro A, della Penna F, Mussini E, Parrotta E, Perrucci MG, Costantini M, Ferri F. Attention to cardiac sensations enhances the heartbeat-evoked potential during exhalation. iScience 2024; 27:109586. [PMID: 38623333 PMCID: PMC11016802 DOI: 10.1016/j.isci.2024.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Respiration and cardiac activity intricately interact through complex physiological mechanisms. The heartbeat-evoked potential (HEP) is an EEG fluctuation reflecting the cortical processing of cardiac signals. We recently found higher HEP amplitude during exhalation than inhalation during a task involving attention to cardiac sensations. This may have been due to reduced cardiac perception during inhalation and heightened perception during exhalation through attentional mechanisms. To investigate relationships between HEP, attention, and respiration, we introduced an experimental setup that included tasks related to cardiac and respiratory interoceptive and exteroceptive attention. Results revealed HEP amplitude increases during the interoceptive tasks over fronto-central electrodes. When respiratory phases were taken into account, HEP increases were primarily driven by heartbeats recorded during exhalation, specifically during the cardiac interoceptive task, while inhalation had minimal impact. These findings emphasize the role of respiration in cardiac interoceptive attention and could have implications for respiratory interventions to fine-tune cardiac interoception.
Collapse
Affiliation(s)
- Andrea Zaccaro
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesca della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Elena Mussini
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Parrotta
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ITAB, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ITAB, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ITAB, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Nakamura NH, Oku Y, Fukunaga M. "Brain-breath" interactions: respiration-timing-dependent impact on functional brain networks and beyond. Rev Neurosci 2024; 35:165-182. [PMID: 37651646 DOI: 10.1515/revneuro-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023]
Abstract
Breathing is a natural daily action that one cannot do without, and it sensitively and intensely changes under various situations. What if this essential act of breathing can impact our overall well-being? Recent studies have demonstrated that breathing oscillations couple with higher brain functions, i.e., perception, motor actions, and cognition. Moreover, the timing of breathing, a phase transition from exhalation to inhalation, modulates specific cortical activity and accuracy in cognitive tasks. To determine possible respiratory roles in attentional and memory processes and functional neural networks, we discussed how breathing interacts with the brain that are measured by electrophysiology and functional neuroimaging: (i) respiration-dependent modulation of mental health and cognition; (ii) respiratory rhythm generation and respiratory pontomedullary networks in the brainstem; (iii) respiration-dependent effects on specific brainstem regions and functional neural networks (e.g., glutamatergic PreBötzinger complex neurons, GABAergic parafacial neurons, adrenergic C1 neurons, parabrachial nucleus, locus coeruleus, temporoparietal junction, default-mode network, ventral attention network, and cingulo-opercular salience network); and (iv) a potential application of breathing manipulation in mental health care. These outlines and considerations of "brain-breath" interactions lead to a better understanding of the interoceptive and cognitive mechanisms that underlie brain-body interactions in health conditions and in stress-related and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, 1-1, Mukogawa cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute of Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
9
|
Belli F, Fischer MH. Breathing shifts visuo-spatial attention. Cognition 2024; 243:105685. [PMID: 38091888 DOI: 10.1016/j.cognition.2023.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Considering recent findings that breathing influences cognitive processes, two experiments explored the relationship between breathing and visuo-spatial attention. In Experiment 1, a lateralized probe detection task was inserted into the breathing cycles of 21 healthy adults to probe effects of breathing on the distribution of spatial attention. In Experiment 2 (N = 26), the Posner cueing task measured breathing-contingent detection speed for lateralized probes after endogenous or exogenous cueing. We consistently found faster responses for left probes after exhalation and for right probes after inhalation in both experiments. Breathing also affected the speed of re-alignment of spatial attention after invalid cueing in Experiment 2. This novel breathing bias shows that our ability to encode visuo-spatial information systematically fluctuates during breathing.
Collapse
Affiliation(s)
- Francesco Belli
- Potsdam Embodied Cognition Group, University of Potsdam, Germany
| | - Martin H Fischer
- Potsdam Embodied Cognition Group, University of Potsdam, Germany.
| |
Collapse
|
10
|
Grossman P. Respiratory sinus arrhythmia (RSA), vagal tone and biobehavioral integration: Beyond parasympathetic function. Biol Psychol 2024; 186:108739. [PMID: 38151156 DOI: 10.1016/j.biopsycho.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Linchpin to the entire area of psychophysiological research and discussion of the vagus is the respiratory and cardiovascular phenomenon known as respiratory sinus arrhythmia (RSA; often synonymous with high-frequency heart-rate variability when it is specifically linked to respiratory frequency), i.e. rhythmic fluctuations in heart rate synchronized to inspiration and expiration. This article aims 1) to clarify concepts, terms and measures commonly employed during the last half century in the scientific literature, which relate vagal function to psychological processes and general aspects of health; and 2) to expand upon an earlier theoretical model, emphasizing the importance of RSA well beyond the current focus upon parasympathetic mechanisms. A close examination of RSA and its relations to the vagus may 1) dispel certain commonly held beliefs about associations between psychological functioning, RSA and the parasympathetic nervous system (for which the vagus nerve plays a major role), and 2) offer fresh perspectives about the likely functions and adaptive significance of RSA, as well as RSA's relationship to vagal control. RSA is neither an invariably reliable index of cardiac vagal tone nor of central vagal outflow to the heart. The model here presented posits that RSA represents an evolutionarily entrenched, cardiovascular and respiratory phenomenon that significantly contributes to meeting continuously changing metabolic, energy and behavioral demands.
Collapse
Affiliation(s)
- Paul Grossman
- Department of Psychosomatic Medicine, University Hospital Basel, Switzerland.
| |
Collapse
|
11
|
Väyrynen T, Helakari H, Korhonen V, Tuunanen J, Huotari N, Piispala J, Kallio M, Raitamaa L, Kananen J, Järvelä M, Matias Palva J, Kiviniemi V. Infra-slow fluctuations in cortical potentials and respiration drive fast cortical EEG rhythms in sleeping and waking states. Clin Neurophysiol 2023; 156:207-219. [PMID: 37972532 DOI: 10.1016/j.clinph.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Infra-slow fluctuations (ISF, 0.008-0.1 Hz) characterize hemodynamic and electric potential signals of human brain. ISFs correlate with the amplitude dynamics of fast (>1 Hz) neuronal oscillations, and may arise from permeability fluctuations of the blood-brain barrier (BBB). It is unclear if physiological rhythms like respiration drive or track fast cortical oscillations, and the role of sleep in this coupling is unknown. METHODS We used high-density full-band electroencephalography (EEG) in healthy human volunteers (N = 21) to measure concurrently the ISFs, respiratory pulsations, and fast neuronal oscillations during periods of wakefulness and sleep, and to assess the strength and direction of their phase-amplitude coupling. RESULTS The phases of ISFs and respiration were both coupled with the amplitude of fast neuronal oscillations, with stronger ISF coupling being evident during sleep. Phases of ISF and respiration drove the amplitude dynamics of fast oscillations in sleeping and waking states, with different contributions. CONCLUSIONS ISFs in slow cortical potentials and respiration together significantly determine the dynamics of fast cortical oscillations. SIGNIFICANCE We propose that these slow physiological phases play a significant role in coordinating cortical excitability, which is a fundamental aspect of brain function.
Collapse
Affiliation(s)
- Tommi Väyrynen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland.
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Johanna Tuunanen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Johanna Piispala
- MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Clinical Neurophysiology, Oulu University Hospital, Oulu 90220, Finland
| | - Mika Kallio
- MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Clinical Neurophysiology, Oulu University Hospital, Oulu 90220, Finland
| | - Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - Janne Kananen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Clinical Neurophysiology, Oulu University Hospital, Oulu 90220, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, University of Glasgow, United Kingdom
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland; MIPT group to: Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Oulu 90220, Finland; Medical Research Center (MRC), Oulu 90220, Finland; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90220, Finland
| |
Collapse
|
12
|
Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci 2023; 26:1670-1684. [PMID: 37697110 DOI: 10.1038/s41593-023-01425-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.
Collapse
Affiliation(s)
- Tahnée Engelen
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Marco Solcà
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Catherine Tallon-Baudry
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France.
| |
Collapse
|
13
|
Shokri-Kojori E, Tomasi D, Demiral SB, Wang GJ, Volkow ND. An autonomic mode of brain activity. Prog Neurobiol 2023; 229:102510. [PMID: 37516341 PMCID: PMC10591458 DOI: 10.1016/j.pneurobio.2023.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
The relevance of interactions between autonomic and central nervous systems remains unclear for human brain function and health, particularly when both systems are challenged under sleep deprivation (SD). We measured brain activity (with fMRI), pulse and respiratory signals, and baseline brain amyloid beta burden (with PET) in healthy participants. We found that SD relative to rested wakefulness (RW) resulted in a significant increase in synchronized low frequency (LF, < 0.1 Hz) activity in an autonomically-related network (AN), including dorsal attention, visual, and sensorimotor regions, which we previously found to have consistent temporal coupling with LF pulse signal changes (regulated by sympathetic tone). SD resulted in a significant phase coherence between the LF component of the pulse signal and a medial network with peak effects in the midbrain reticular formation, and between LF component of the respiratory variations (regulated by respiratory motor output) and a cerebellar network. The LF power of AN during SD was significantly and independently correlated with pulse-medial network and respiratory-cerebellar network phase coherences (total adjusted R2 = 0.78). Higher LF power of AN during SD (but not RW) was associated with lower amyloid beta burden (Cohen's d = 0.8). In sum, SD triggered an autonomic mode of synchronized brain activity that was associated with distinct autonomic-central interactions. Findings highlight the direct relevance of global cortical synchronization to brain clearance mechanisms.
Collapse
Affiliation(s)
- Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
15
|
Molle L, Coste A, Benoit CE, Derosiere G, Janaqi S, Perrey S, Dupeyron A. Inhalation boosts perceptual awareness and decision speed. J Neurophysiol 2023; 130:516-523. [PMID: 37529836 DOI: 10.1152/jn.00492.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023] Open
Abstract
The emergence of consciousness is one of biology's biggest mysteries. During the past two decades, a major effort has been made to identify the neural correlates of consciousness, but in comparison, little is known about the physiological mechanisms underlying first-person subjective experience. Attention is considered the gateway of information to consciousness. Recent work suggests that the breathing phase (i.e., inhalation vs. exhalation) modulates attention, in such a way that attention directed toward exteroceptive information would increase during inhalation. One key hypothesis emerging from this work is that inhalation would improve perceptual awareness and near-threshold decision-making. The present study directly tested this hypothesis. We recorded the breathing rhythms of 30 humans performing a near-threshold decision-making task, in which they had to decide whether a liminal Gabor was tilted to the right or the left (objective decision task) and then to rate their perceptual awareness of the Gabor orientation (subjective decision task). In line with our hypothesis, the data revealed that, relative to exhalation, inhalation improves perceptual awareness and speeds up objective decision-making, without impairing accuracy. Overall, the present study builds on timely questions regarding the physiological mechanisms underlying consciousness and shows that breathing shapes the emergence of subjective experience and decision-making.NEW & NOTEWORTHY Breathing is a ubiquitous biological rhythm in animal life. However, little is known about its effect on consciousness and decision-making. Here, we measured the respiratory rhythm of humans performing a near-threshold discrimination experiment. We show that inhalation, compared with exhalation, improves perceptual awareness and accelerates decision-making while leaving accuracy unaffected.
Collapse
Affiliation(s)
- Ludovic Molle
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Department of Physical Medicine and Rehabilitation, Nîmes University Hospital, Univ Montpellier, Nîmes, France
| | - Alexandre Coste
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Charles-Etienne Benoit
- Inter-University Laboratory of Human Movement Biology, EA 7424, Univ Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Gerard Derosiere
- Institute of Neuroscience, Laboratory of Neurophysiology, Université catholique de Louvain, Brussels, Belgium
- Lyon Neuroscience Research Center - Impact team, Inserm U1028, CNRS UMR5292, Lyon 1 University, Bron, France
| | - Stefan Janaqi
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Arnaud Dupeyron
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Department of Physical Medicine and Rehabilitation, Nîmes University Hospital, Univ Montpellier, Nîmes, France
| |
Collapse
|
16
|
Kluger DS, Forster C, Abbasi O, Chalas N, Villringer A, Gross J. Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling. Nat Commun 2023; 14:4699. [PMID: 37543697 PMCID: PMC10404236 DOI: 10.1038/s41467-023-40250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/13/2023] [Indexed: 08/07/2023] Open
Abstract
Bodily rhythms such as respiration are increasingly acknowledged to modulate neural oscillations underlying human action, perception, and cognition. Conversely, the link between respiration and aperiodic brain activity - a non-oscillatory reflection of excitation-inhibition (E:I) balance - has remained unstudied. Aiming to disentangle potential respiration-related dynamics of periodic and aperiodic activity, we applied recently developed algorithms of time-resolved parameter estimation to resting-state MEG and EEG data from two labs (total N = 78 participants). We provide evidence that fluctuations of aperiodic brain activity (1/f slope) are phase-locked to the respiratory cycle, which suggests that spontaneous state shifts of excitation-inhibition balance are at least partly influenced by peripheral bodily signals. Moreover, differential temporal dynamics in their coupling to non-oscillatory and oscillatory activity raise the possibility of a functional distinction in the way each component is related to respiration. Our findings highlight the role of respiration as a physiological influence on brain signalling.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Carina Forster
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, MindBrainBody Institute, Berlin, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Folschweiller S, Sauer JF. Behavioral State-Dependent Modulation of Prefrontal Cortex Activity by Respiration. J Neurosci 2023; 43:4795-4807. [PMID: 37277176 PMCID: PMC10312056 DOI: 10.1523/jneurosci.2075-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Respiration-rhythmic oscillations in the local field potential emerge in the mPFC, a cortical region with a key role in the regulation of cognitive and emotional behavior. Respiration-driven rhythms coordinate local activity by entraining fast γ oscillations as well as single-unit discharges. To what extent respiration entrainment differently engages the mPFC network in a behavioral state-dependent manner, however, is not known. Here, we compared the respiration entrainment of mouse PFC local field potential and spiking activity (23 male and 2 female mice) across distinct behavioral states: during awake immobility in the home cage (HC), during passive coping in response to inescapable stress under tail suspension (TS), and during reward consumption (Rew). Respiration-driven rhythms emerged during all three states. However, prefrontal γ oscillations were more strongly entrained by respiration during HC than TS or Rew. Moreover, neuronal spikes of putative pyramidal cells and putative interneurons showed significant respiration phase-coupling throughout behaviors with characteristic phase preferences depending on the behavioral state. Finally, while phase-coupling dominated in deep layers in HC and Rew conditions, TS resulted in the recruitment of superficial layer neurons to respiration. These results jointly suggest that respiration dynamically entrains prefrontal neuronal activity depending on the behavioral state.SIGNIFICANCE STATEMENT The mPFC, through its extensive connections (e.g., to the amygdala, the striatum, serotoninergic and dopaminergic nuclei), flexibly regulates cognitive behaviors. Impairment of prefrontal functions can lead to disease states, such as depression, addiction, or anxiety disorders. Deciphering the complex regulation of PFC activity during defined behavioral states is thus an essential challenge. Here, we investigated the role of a prefrontal slow oscillation that has recently attracted rising interest, the respiration rhythm, in modulating prefrontal neurons during distinct behavioral states. We show that prefrontal neuronal activity is differently entrained by the respiration rhythm in a cell type- and behavior-dependent manner. These results provide first insight into the complex modulation of prefrontal activity patterns by rhythmic breathing.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
18
|
Candia-Rivera D, Sappia MS, Horschig JM, Colier WNJM, Valenza G. Confounding effects of heart rate, breathing rate, and frontal fNIRS on interoception. Sci Rep 2022; 12:20701. [PMID: 36450811 PMCID: PMC9712694 DOI: 10.1038/s41598-022-25119-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies have established that cardiac and respiratory phases can modulate perception and related neural dynamics. While heart rate and respiratory sinus arrhythmia possibly affect interoception biomarkers, such as heartbeat-evoked potentials, the relative changes in heart rate and cardiorespiratory dynamics in interoceptive processes have not yet been investigated. In this study, we investigated the variation in heart and breathing rates, as well as higher functional dynamics including cardiorespiratory correlation and frontal hemodynamics measured with fNIRS, during a heartbeat counting task. To further investigate the functional physiology linked to changes in vagal activity caused by specific breathing rates, we performed the heartbeat counting task together with a controlled breathing rate task. The results demonstrate that focusing on heartbeats decreases breathing and heart rates in comparison, which may be part of the physiological mechanisms related to "listening" to the heart, the focus of attention, and self-awareness. Focusing on heartbeats was also observed to increase frontal connectivity, supporting the role of frontal structures in the neural monitoring of visceral inputs. However, cardiorespiratory correlation is affected by both heartbeats counting and controlled breathing tasks. Based on these results, we concluded that variations in heart and breathing rates are confounding factors in the assessment of interoceptive abilities and relative fluctuations in breathing and heart rates should be considered to be a mode of covariate measurement of interoceptive processes.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy.
| | - M Sofía Sappia
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
- Donders Institute for Brain, Behaviour and Cognition, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Jörn M Horschig
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
| | - Willy N J M Colier
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
| | - Gaetano Valenza
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy
| |
Collapse
|
19
|
Oku Y. Temporal variations in the pattern of breathing: techniques, sources, and applications to translational sciences. J Physiol Sci 2022; 72:22. [PMID: 36038825 DOI: 10.1186/s12576-022-00847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022]
Abstract
The breathing process possesses a complex variability caused in part by the respiratory central pattern generator in the brainstem; however, it also arises from chemical and mechanical feedback control loops, network reorganization and network sharing with nonrespiratory motor acts, as well as inputs from cortical and subcortical systems. The notion that respiratory fluctuations contain hidden information has prompted scientists to decipher respiratory signals to better understand the fundamental mechanisms of respiratory pattern generation, interactions with emotion, influences on the cortical neuronal networks associated with cognition, and changes in variability in healthy and disease-carrying individuals. Respiration can be used to express and control emotion. Furthermore, respiration appears to organize brain-wide network oscillations via cross-frequency coupling, optimizing cognitive performance. With the aid of information theory-based techniques and machine learning, the hidden information can be translated into a form usable in clinical practice for diagnosis, emotion recognition, and mental conditioning.
Collapse
Affiliation(s)
- Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
20
|
Madsen J, Parra LC. Cognitive processing of a common stimulus synchronizes brains, hearts, and eyes. PNAS NEXUS 2022; 1:pgac020. [PMID: 36712806 PMCID: PMC9802497 DOI: 10.1093/pnasnexus/pgac020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 04/21/2023]
Abstract
Neural, physiological, and behavioral signals synchronize between human subjects in a variety of settings. Multiple hypotheses have been proposed to explain this interpersonal synchrony, but there is no clarity under which conditions it arises, for which signals, or whether there is a common underlying mechanism. We hypothesized that cognitive processing of a shared stimulus is the source of synchrony between subjects, measured here as intersubject correlation (ISC). To test this, we presented informative videos to participants in an attentive and distracted condition and subsequently measured information recall. ISC was observed for electro-encephalography, gaze position, pupil size, and heart rate, but not respiration and head movements. The strength of correlation was co-modulated in the different signals, changed with attentional state, and predicted subsequent recall of information presented in the videos. There was robust within-subject coupling between brain, heart, and eyes, but not respiration or head movements. The results suggest that ISC is the result of effective cognitive processing, and thus emerges only for those signals that exhibit a robust brain-body connection. While physiological and behavioral fluctuations may be driven by multiple features of the stimulus, correlation with other individuals is co-modulated by the level of attentional engagement with the stimulus.
Collapse
Affiliation(s)
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|