1
|
Shariati A, Kashi M, Chegini Z, Hosseini SM. Antibiotics-free compounds for managing carbapenem-resistant bacteria; a narrative review. Front Pharmacol 2024; 15:1467086. [PMID: 39355778 PMCID: PMC11442292 DOI: 10.3389/fphar.2024.1467086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
Collapse
Affiliation(s)
- Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Milad Kashi
- Student research committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
3
|
Wintachai P, Jaroensawat N, Harding P, Wiwasuku T, Mitsuwan W, Septama AW. Antibacterial and antibiofilm efficacy of Solanum lasiocarpum root extract synthesized silver/silver chloride nanoparticles against Staphylococcus haemolyticus associated with bovine mastitis. Microb Pathog 2024; 192:106724. [PMID: 38834135 DOI: 10.1016/j.micpath.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Staphylococcus haemolyticus is a cause of bovine mastitis, leading to inflammation in the mammary gland. This bacterial infection adversely affects animal health, reducing milk quality and yield. Its emergence has been widely reported, representing a significant economic loss for dairy farms. Interestingly, S. haemolyticus exhibits higher levels of antimicrobial resistance than other coagulase-negative Staphylococci. In this study, we synthesized silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Solanum lasiocarpum root extract and evaluated their antibacterial and antibiofilm activities against S. haemolyticus. The formation of the Ag/AgCl-NPs was confirmed using UV-visible spectroscopy, which revealed maximum absorption at 419 nm. X-ray diffraction (XRD) analysis demonstrated the crystalline nature of the Ag/AgCl-NPs, exhibiting a face-centered cubic lattice. Fourier transform infrared (FT-IR) spectroscopy elucidated the functional groups potentially involved in the Ag/AgCl-NPs synthesis. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the Ag/AgCl-NPs was 10 nm. Antimicrobial activity results indicated that the minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) of the Ag/AgCl-NPs treatment were 7.82-15.63 μg/mL towards S. haemolyticus. Morphological changes in bacterial cells treated with the Ag/AgCl-NPs were observed under scanning electron microscopy (SEM). The Ag/AgCl-NPs reduced both the biomass of biofilm formation and preformed biofilm by approximately 20.24-94.66 % and 13.67-88.48 %. Bacterial viability within biofilm formation and preformed biofilm was reduced by approximately 21.56-77.54 % and 18.9-71.48 %, respectively. This study provides evidence of the potential of the synthesized Ag/AgCl-NPs as an antibacterial and antibiofilm agent against S. haemolyticus.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand.
| | - Nannapat Jaroensawat
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Phimphaka Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Theanchai Wiwasuku
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; One Health Research Center, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Center of Excellence in Innovation of Essential Oil and Bio-active Compound, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| |
Collapse
|
4
|
Zhang Y, Shao Y, You H, Shen Y, Miao F, Yuan C, Chen X, Zhai M, Shen Y, Zhang J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024; 595:110098. [PMID: 38705084 DOI: 10.1016/j.virol.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Acinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment. Phage-related therapy is a promising strategy to tame troublesome multidrug-resistant bacteria. Here, we isolated and evaluated a highly efficient lytic phage called MRABP9 from hospital sewage. The phage was a novel species within the genus Friunavirus and exhibited lytic activity against 2 other identified MRAB strains. Genomic analysis revealed it was a safe virulent phage and a pectate lyase domain was identified within its tail spike protein. MRABP9 showed potent bactericidal and anti-biofilm activity against MRAB, significantly delaying the time point of bacterial regrowth in vitro. Phage administration could rescue the mice from acute lethal MRAB infection. Considering its features, MRABP9 has the potential as an efficient candidate for prophylactic and therapeutic use against acute infections caused by MRAB strains.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China.
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Hongyang You
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chenyan Yuan
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| |
Collapse
|
5
|
Evseev PV, Sukhova AS, Tkachenko NA, Skryabin YP, Popova AV. Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses 2024; 16:771. [PMID: 38793652 PMCID: PMC11126041 DOI: 10.3390/v16050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.
Collapse
Affiliation(s)
- Peter V. Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasia S. Sukhova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Nikolay A. Tkachenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Yuriy P. Skryabin
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, City District Serpukhov, Moscow Region, 142279 Obolensk, Russia; (A.S.S.); (Y.P.S.)
| |
Collapse
|
6
|
Manley R, Fitch C, Francis V, Temperton I, Turner D, Fletcher J, Phil M, Michell S, Temperton B. Resistance to bacteriophage incurs a cost to virulence in drug-resistant Acinetobacter baumannii. J Med Microbiol 2024; 73:001829. [PMID: 38743467 PMCID: PMC11170128 DOI: 10.1099/jmm.0.001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Robyn Manley
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Christian Fitch
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Vanessa Francis
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Isaac Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Julie Fletcher
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Mitchelmore Phil
- University of Exeter, College of Medicine and Health, Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Steve Michell
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| |
Collapse
|
7
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
8
|
Wang R, Yeh YJ, An YN, Virly. Engineering pH-sensitive erodible chitosan hydrogel composite containing bacteriophage: An interplay between hydrogel and bacteriophage against Staphylococcus aureus. Int J Biol Macromol 2023; 253:127371. [PMID: 37827407 DOI: 10.1016/j.ijbiomac.2023.127371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Encapsulation of phages represents a key approach for improving phage stability and controlling phage delivery dosage. The hydrogel made from positively charged quaternized chitosan (QCS) and multivalent crosslinker, aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol) (APP) was introduced for the first time for drug (phage 44AHJD) delivery. The freeze-thawing (FT) treatment enhanced the porous structure and the stress resistance of native hydrogel with increased compression stress (stiffness) from 10 to 20 kPa. The stiffness of the phage-loaded hydrogel (FTP) was suitable for the proper release of phage particles and polymer chains, both working synergistically against bacterial growth. The FTP followed the Korsmeyer-Peppas model's anomalous diffusion of phage particles at different temperatures (30-45 °C) and pH (6.6-8.5) conditions. FTP was sensitive to pH, which released more phage particles at pH-neutral conditions, while the release under acidic and alkaline conditions was more based on gel degradation. The high biocompatibility of FTP hydrogel at its working concentration of 30 mg mL-1 was demonstrated through a hemolysis ratio of <2 %. Sixty percent of the total encapsulated phages and 6 mg mL-1 of hydrogel debris were released after 10 h of hydrogel submerge treatment, which can fight the growing bacteria and the emergence of phage-resistant bacteria.
Collapse
Affiliation(s)
- Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei City, Taiwan; Master of Public Health (MPH) Program, National Taiwan University, Taipei City, Taiwan; GIP-TRIAD Master's Degree in Agro-Biomedical Science, National Taiwan University, Taipei City, Taiwan.
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, National Taiwan University, Taipei City, Taiwan
| | - Yu-Ning An
- Institute of Food Safety and Health, National Taiwan University, Taipei City, Taiwan
| | - Virly
- Global Health Program, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Food Technology, Faculty of Agricultural Technology, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
| |
Collapse
|
9
|
Bouza E, Muñoz P, Burillo A. How to treat severe Acinetobacter baumannii infections. Curr Opin Infect Dis 2023; 36:596-608. [PMID: 37930071 DOI: 10.1097/qco.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW To update the management of severe Acinetobacter baumannii infections (ABI), particularly those caused by multi-resistant isolates. RECENT FINDINGS The in vitro activity of the various antimicrobial agents potentially helpful in treating ABI is highly variable and has progressively decreased for many of them, limiting current therapeutic options. The combination of more than one drug is still advisable in most circumstances. Ideally, two active first-line drugs should be used. Alternatively, a first-line and a second-line drug and, if this is not possible, two or more second-line drugs in combination. The emergence of new agents such as Cefiderocol, the combination of Sulbactam and Durlobactam, and the new Tetracyclines offer therapeutic options that need to be supported by clinical evidence. SUMMARY The apparent limitations in treating infections caused by this bacterium, the rapid development of resistance, and the serious underlying situation in most cases invite the search for alternatives to antibiotic treatment, the most promising of which seems to be bacteriophage therapy.
Collapse
Affiliation(s)
- Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
- CIBER of Respiratory Diseases (CIBERES CB06/06/0058), Madrid, Spain
| | - Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón
- Medicine Department, School of Medicine, Universidad Complutense de Madrid
- Gregorio Marañón Health Research Institute
| |
Collapse
|
10
|
Wang M, Ning Y, Jiao X, Liu J, Qiao J. Bacteriophages and their derived enzymes as promising alternatives for the treatment of Acinetobacter baumannii infections. Arch Virol 2023; 168:288. [PMID: 37947926 DOI: 10.1007/s00705-023-05910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Nosocomial infections with the opportunistic bacterium Acinetobacter baumannii pose a severe challenge to clinical treatment, which is aggravated by the increasing occurrence of multi-drug resistance, especially resistance to carbapenems. The use of phage therapy as an alternative and supplement to the current antibiotics has become an important research topic in the post-antibiotic era. This review summarizes in vivo and in vitro studies on phage therapy against multi-drug-resistant A. baumannii infection that have used different approaches, including treatment with a single phage, combination with other phages or non-phage agents, and administration of phage-derived enzymes. We also briefly discuss the current challenges of phage-based therapy as well as promising approaches for the treatment of A. baumannii infection in the future.
Collapse
Affiliation(s)
- Menglu Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Yu Ning
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Xin Jiao
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jiayi Liu
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
- Department of Basic Medicine, Weifang Nursing Vocational College, Weifang, 262500, Shandong, People's Republic of China
| | - Jinjuan Qiao
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Leungtongkam U, Kitti T, Khongfak S, Thummeepak R, Tasanapak K, Wongwigkarn J, Khanthawong S, Belkhiri A, Ribeiro HG, Turner JS, Malik DJ, Sitthisak S. Genome characterization of the novel lytic phage vB_AbaAut_ChT04 and the antimicrobial activity of its lysin peptide against Acinetobacter baumannii isolates from different time periods. Arch Virol 2023; 168:238. [PMID: 37660314 DOI: 10.1007/s00705-023-05862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023]
Abstract
Acinetobacter baumannii is an important opportunistic pathogen, usually associated with immunocompromised individuals with a prolonged period of stay in a hospital. Currently, the incidence of multi-drug resistant A. baumannii (MDR-AB) and extensively drug-resistant A. baumannii (XDR-AB) is increasing rapidly in Thailand, mirroring the trend worldwide. Novel therapeutic approaches for the treatment of A. baumannii infection using bacteriophages are being evaluated, and the use of phage-derived peptides is being tested as alternative approach to fighting infection. In this study, we isolated and determined the biological features of a lytic A. baumannii phage called vB_AbaAut_ChT04 (vChT04). The vChT04 phage was classified as a member of the family Autographiviridae of the class Caudoviricetes. It showed a short latent period (10 min) and a large burst size (280 PFU cell-1), and it was able to infect 52 out of 150 clinical MDR-AB strains tested (34.67%). Most of the phage-sensitive strains were A. baumannii strains that had been isolated during the same year that the phage was isolated. The phage showed activity across a broad pH (pH 5.0-8.0) and temperature (4-37°C) range. Whole-genome analysis revealed that the vChT04 genome comprises 41,158 bp with a 39.3% GC content and contains 48 open reading frames (ORFs), 28 of which were assigned putative functions based on homology to previously identified phage genes. Comparative genomic analysis demonstrated that vChT04 had the highest similarity to phage vB_AbaP_WU2001, which was isolated in the southern part of Thailand. An endolysin gene found in the vChT04 genome was used to synthesize an antimicrobial peptide (designated as PLysChT04) and its antimicrobial activity was evaluated using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. The MIC and MBC values of peptide PLysChT04 against MDR-AB and XDR-AB were 312.5-625 µg/mL, and it was able to inhibit both phage-susceptible and phage-resistant isolates collected over different time periods. PLysChT04 showed good efficacy in killing drug-resistant A. baumannii and other bacterial strains, and it is a promising candidate for development as an alternative therapeutic agent targeting A. baumannii infections.
Collapse
Affiliation(s)
- Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Thawatchai Kitti
- Department of Oriental Medicine, Chiang Rai College, Chiangrai, Thailand
| | - Supat Khongfak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Kannipa Tasanapak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jintana Wongwigkarn
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sophit Khanthawong
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Aouatif Belkhiri
- Chemical Engineering Department, Loughborough University, Loughborough, UK
| | - Henrique G Ribeiro
- Chemical Engineering Department, Loughborough University, Loughborough, UK
| | - John S Turner
- Chemical Engineering Department, Loughborough University, Loughborough, UK
| | - Danish J Malik
- Chemical Engineering Department, Loughborough University, Loughborough, UK
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
- Centre of Excellence in Fungal Research, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
12
|
Chen X, Hao K, Zong Y, Guo M, You J, He Q, Zhang D. Effects of ultraviolet radiation on microorganism and nitrogen metabolism in sewage under plateau background. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52209-52226. [PMID: 36823464 DOI: 10.1007/s11356-023-25965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The experiments were conducted in the Tibetan plateau environment, and the sewage treatment conditions were designed with ultraviolet (UV) irradiation for 5 min, 10 min, 30 min, and 180 min. The Illumina MiSeq high-throughput sequencing technology was used to analyze the microbiological and metabolomic patterns of the plateau sewage treatment at the experimental scale, and then the response mechanisms of microbial and nitrogen metabolism in sewage treatment were explored. The abundance of metabolism at the first level and global and overview maps at the second level were higher in the plateau environment than in other regions. The KEGG pathway shows the effect of UV on nitrogen metabolism and its aptitude to improving or inhibit it. The two main nitrogen removal processes are nitrification and dissimilatory nitrate reduction. This study reveals the response of activated sludge to UV radiation in a plateau environment from microbiological and metabolomic perspectives, providing ideas and perspectives for the study of water treatment system methods, as well as laying a valuable theoretical foundation for the enhancement of plateau sewage treatment capacity.
Collapse
Affiliation(s)
- Xiangyu Chen
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Kaiyue Hao
- Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yongchen Zong
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China.
| | - Mingzhe Guo
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Junhao You
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Qiang He
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Dongyan Zhang
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| |
Collapse
|
13
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
14
|
Wintachai P, Surachat K, Chaimaha G, Septama AW, Smith DR. Isolation and Characterization of a Phapecoctavirus Infecting Multidrug-Resistant Acinetobacter baumannii in A549 Alveolar Epithelial Cells. Viruses 2022; 14:v14112561. [PMID: 36423170 PMCID: PMC9695679 DOI: 10.3390/v14112561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) is an emerging pathogen in the ESKAPE group. The global burden of antimicrobial resistance has led to renewed interest in alternative antimicrobial treatment strategies, including phage therapy. This study isolated and characterized a phage vB_AbaM_ ABPW7 (vABPW7) specific to MDR A. baumannii. Morphological analysis showed that phage vABPW7 belongs to the Myoviridae family. Genome analysis showed that the phage DNA genome consists of 148,647 bp and that the phage is a member of the Phapecoctavirus genus of the order Caudovirales. A short latent period and a large burst size indicated that phage vABPW7 was a lytic phage that could potentially be used in phage therapy. Phage vABPW7 is a high-stability phage that has high lytic activity. Phage vABPW7 could effectively reduce biofilm formation and remove preformed biofilm. The utility of phage vABPW7 was investigated in a human A549 alveolar epithelial cell culture model. Phage vABPW7 was not cytotoxic to A549 cells, and the phage could significantly reduce planktonic MDR A. baumannii and MDR A. baumannii adhesion on A549 cells without cytotoxicity. This study suggests that phage vABPW7 has the potential to be developed further as a new antimicrobial agent against MDR A. baumannii.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Correspondence:
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ganyalak Chaimaha
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang 15314, Banten, Indonesia
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
15
|
Soontarach R, Nwabor OF, Voravuthikunchai SP. Interaction of lytic phage T1245 with antibiotics for enhancement of antibacterial and anti-biofilm efficacy against multidrug-resistant Acinetobacter baumannii. BIOFOULING 2022; 38:994-1005. [PMID: 36606321 DOI: 10.1080/08927014.2022.2163479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Biofilms associated with multidrug-resistant (MDR) Acinetobacter baumannii on medical devices remain a big clinical problem. Antibiotic susceptibility tests were performed with eight commonly employed antibiotics against clinical isolates. The effects of antibiotics in combination with well-characterized lytic phage T1245 were studied to assess their antibacterial and anti-biofilm efficacy. Ceftazidime, colistin, imipenem, and meropenem significantly reduced bacterial density up to approximately 80% when combined with phage T1245, compared with control. Phage T1245 in combination with ceftazidime, colistin, and meropenem at subinhibitory concentrations demonstrated significant reduction in biomass and bacterial viability of 3-day established biofilms, compared with antibiotic alone. In addition, electron microscopy further confirmed the disruption of biofilm structure and cell morphology upon treatment with phage T1245 and antibiotics, including ceftazidime, colistin, and meropenem. Combined treatment of phage T1245 with these antibiotics could be employed for the management of A. baumannii infections and eradication of the bacterial biofilms.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| | - Ozioma Forstinus Nwabor
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
16
|
Basardeh E, Piri-Gavgani S, Soltanmohammadi B, Ghanei M, Omrani MD, Soezi M, Shokrgozar MA, Azizi M, Fateh A, Vaziri F, Siadat SD, Sharifzadeh Z, Rahimi-Jamnani F. Anti- Acinetobacter baumannii single-chain variable fragments show direct bactericidal activity. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1141-1149. [PMID: 36246061 PMCID: PMC9526879 DOI: 10.22038/ijbms.2022.64062.14106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/21/2022] [Indexed: 11/06/2022]
Abstract
Objectives The high resistance rate of Acinetobacter baumannii and the limited number of available antibiotics have prompted a worldwide effort to develop effective antimicrobial agents. Accordingly, identifying single-chain variable fragment antibodies (scFvs), capable of exerting direct antibacterial activity in an immune system-independent manner, may be making immunocompromised patients more susceptible to A. baumannii infections. Materials and Methods To isolate bactericidal scFvs targeting A. baumannii, we panned a large human scFv phage display library against whole-cell extensively drug-resistant (XDR) A. baumannii strains grown as biofilm or cultured with human blood or human peripheral blood mononuclear cells plus plasma. The binding of scFv-phages to A. baumannii was assessed by the dot-blot assay. Soluble scFvs, derived from the selected phages, were assessed based on their ability to bind and inhibit the growth of A. baumannii. Results Five phage clones showed the highest reactivity toward A. baumannii. Among five soluble scFvs, derived from positive phage clones, two scFvs, EB211 and EB279, had high expression yields and displayed strong binding to A. baumannii compared with the controls. Moreover, XDR A. baumannii strains treated with positively-charged scFvs, including EB211, EB279, or a cocktail of EB211 and EB279 (200 µg/ml), displayed lower viability (approximately 50%, 78%, and 40% viability, respectively) compared with PBS-treated bacteria. Conclusion These results suggest that combining last-resort antibiotics with bactericidal scFvs could provide promising outcomes in immunocompromised individuals with A. baumannii infections.
Collapse
Affiliation(s)
- Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran ,Corresponding author: Fatemeh Rahimi-Jamnani. Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-21-66953311; Fax: +98-21-66465132;
| |
Collapse
|
17
|
Vaccinomics to Design a Multi-Epitopes Vaccine for Acinetobacter baumannii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095568. [PMID: 35564967 PMCID: PMC9104312 DOI: 10.3390/ijerph19095568] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance (AR) is the result of microbes’ natural evolution to withstand the action of antibiotics used against them. AR is rising to a high level across the globe, and novel resistant strains are emerging and spreading very fast. Acinetobacter baumannii is a multidrug resistant Gram-negative bacteria, responsible for causing severe nosocomial infections that are treated with several broad spectrum antibiotics: carbapenems, β-lactam, aminoglycosides, tetracycline, gentamicin, impanel, piperacillin, and amikacin. The A. baumannii genome is superplastic to acquire new resistant mechanisms and, as there is no vaccine in the development process for this pathogen, the situation is more worrisome. This study was conducted to identify protective antigens from the core genome of the pathogen. Genomic data of fully sequenced strains of A. baumannii were retrieved from the national center for biotechnological information (NCBI) database and subjected to various genomics, immunoinformatics, proteomics, and biophysical analyses to identify potential vaccine antigens against A. baumannii. By doing so, four outer membrane proteins were prioritized: TonB-dependent siderphore receptor, OmpA family protein, type IV pilus biogenesis stability protein, and OprD family outer membrane porin. Immuoinformatics predicted B-cell and T-cell epitopes from all four proteins. The antigenic epitopes were linked to design a multi-epitopes vaccine construct using GPGPG linkers and adjuvant cholera toxin B subunit to boost the immune responses. A 3D model of the vaccine construct was built, loop refined, and considered for extensive error examination. Disulfide engineering was performed for the stability of the vaccine construct. Blind docking of the vaccine was conducted with host MHC-I, MHC-II, and toll-like receptors 4 (TLR-4) molecules. Molecular dynamic simulation was carried out to understand the vaccine-receptors dynamics and binding stability, as well as to evaluate the presentation of epitopes to the host immune system. Binding energies estimation was achieved to understand intermolecular interaction energies and validate docking and simulation studies. The results suggested that the designed vaccine construct has high potential to induce protective host immune responses and can be a good vaccine candidate for experimental in vivo and in vitro studies.
Collapse
|
18
|
Soontarach R, Srimanote P, Enright MC, Blundell-Hunter G, Dorman MJ, Thomson NR, Taylor PW, Voravuthikunchai SP. Isolation and Characterisation of Bacteriophage Selective for Key Acinetobacter baumannii Capsule Chemotypes. Pharmaceuticals (Basel) 2022; 15:443. [PMID: 35455440 PMCID: PMC9027227 DOI: 10.3390/ph15040443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Nineteen bacteriophages against five main capsular types of multidrug-resistant Acinetobacter baumannii were isolated from tertiary care hospital sewage. Eight representative phages from each capsular type were characterized and tested for their biological properties. The biological features revealed that phages T1245, T444, and T515 had a large burst size of more than 420 pfu/mL, together with a short latent period lasting less than 6 min, and were readily adsorbed to a bacterial host within 10 min. Moreover, these phages demonstrated host specificity and stability over a broad range of temperatures (-20 to 60 °C) and pH (5.0-9.0). A whole-genome analysis of six lytic and two temperate phages revealed high genomic similarity with double-stranded DNA between 40 and 50 kb and G + C content of 38-39%. The protein compositions disclosed the absence of toxin-coding genes. The phylogenic results, together with morphological micrographs, confirmed that three selected phages (T1245, T444, and T515) belong to the Podoviridae family within the order Caudovirales. The biological data and bioinformatics analysis indicated that these novel A. baumannii phages possess important enzymes, including depolymerase and endolysin, which could be further developed as promising alternative antibacterial agents to control A. baumannii infections.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Songkhla 90110, Thailand;
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potjanee Srimanote
- Graduate Program, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12121, Thailand;
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | | | - Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; (M.J.D.); (N.R.T.)
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; (M.J.D.); (N.R.T.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Peter W. Taylor
- School of Pharmacy, University College London, London WC1N 1AX, UK; (G.B.-H.); (P.W.T.)
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Songkhla 90110, Thailand;
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
19
|
Wintachai P, Voravuthikunchai SP. Characterization of Novel Lytic Myoviridae Phage Infecting Multidrug-Resistant Acinetobacter baumannii and Synergistic Antimicrobial Efficacy between Phage and Sacha Inchi Oil. Pharmaceuticals (Basel) 2022; 15:291. [PMID: 35337089 PMCID: PMC8949666 DOI: 10.3390/ph15030291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant (MDR) strains of Acinetobacter baumannii have become a major cause of hospital-acquired infections, resulting in an increase in morbidity and mortality worldwide. Many alternative treatments, including phage therapy, are attractive approaches for overcoming problems posed by antibiotic resistance. A newly isolated phage, vWUPSU-specific MDR A. baumannii, showed a narrow host range against MDR A. baumannii. This research was conducted to isolate, characterize, and apply the phage with sacha inchi oil as an alternative antimicrobial agent. Genome analysis suggested that phage vWUPSU is a novel phage belonging to the family Myoviridae, order Caudoviridae. This phage prevented biofilm formation and eradicated preformed biofilms in a dose-dependent manner. In addition, a synergistic antimicrobial effect of the interaction between phage vWUPSU and sacha inchi oil on planktonic cells was observed. The combination of phage and sacha inchi oil significantly inhibited and removed biofilms, compared with the effects of either single treatment. The results of this work indicate that phage vWUPSU could potentially be applied to control MDR A. baumannii. The antibacterial and antibiofilm activities of the combination of phage vWUPSU and sacha inchi oil have attracted significant interests in the development of antibacterial phage products as beneficial treatment options.
Collapse
Affiliation(s)
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| |
Collapse
|