1
|
Koszela J, Pham NT, Shave S, St-Cyr D, Ceccarelli DF, Orlicky S, Marinier A, Sicheri F, Tyers M, Auer M. A Novel Confocal Scanning Protein-Protein Interaction Assay (PPI-CONA) Reveals Exceptional Selectivity and Specificity of CC0651, a Small Molecule Binding Enhancer of the Weak Interaction between the E2 Ubiquitin-Conjugating Enzyme CDC34A and Ubiquitin. Bioconjug Chem 2024; 35:1441-1449. [PMID: 39167708 PMCID: PMC11417995 DOI: 10.1021/acs.bioconjchem.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Protein-protein interactions (PPIs) are some of the most challenging target classes in drug discovery. Highly sensitive detection techniques are required for the identification of chemical modulators of PPIs. Here, we introduce PPI confocal nanoscanning (PPI-CONA), a miniaturized, microbead based high-resolution fluorescence imaging assay. We demonstrate the capabilities of PPI-CONA by detecting low affinity ternary complex formation between the human CDC34A ubiquitin-conjugating (E2) enzyme, ubiquitin, and CC0651, a small molecule enhancer of the CDC34A-ubiquitin interaction. We further exemplify PPI-CONA with an E2 enzyme binding study on CC0651 and a CDC34A binding specificity study of a series of CC0651 analogues. Our results indicate that CC0651 is highly selective toward CDC34A. We further demonstrate how PPI-CONA can be applied to screening very low affinity interactions. PPI-CONA holds potential for high-throughput screening for modulators of PPI targets and characterization of their affinity, specificity, and selectivity.
Collapse
Affiliation(s)
- Joanna Koszela
- School
of Molecular Biosciences, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Nhan T. Pham
- School
of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, U.K.
- College
of Medicine and Veterinary Medicine, Institute for Regeneration and
Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, U.K.
| | - Steven Shave
- School
of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, U.K.
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Daniel St-Cyr
- X-Chem
Inc., Montréal, Québec H4S 1Z9, Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Derek F. Ceccarelli
- Centre
for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Steven Orlicky
- Centre
for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anne Marinier
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Frank Sicheri
- Centre
for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Mike Tyers
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Québec H3T 1J4, Canada
- Program
in Molecular Medicine, The Hospital for
Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Manfred Auer
- School
of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, U.K.
| |
Collapse
|
2
|
Küçük N, Kaya Ş, Şahin S, Çağlayan MO. Structural switching aptamer-based electrochemical sensor for mycotoxin patulin detection. Toxicon 2024; 239:107583. [PMID: 38141970 DOI: 10.1016/j.toxicon.2023.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, an electrochemical and aptamer-based aptasensor was developed for the sensitive detection of patulin, a mycotoxin commonly found in fruits and fruit-based products. The aptasensor used an innovative structural switching signal-off platform for detecting patulin. The aptamer immobilization on screen-printed carbon electrodes was achieved through Au electrodeposition and thiol group (-SH) route. Response surface methodology was used to determine the optimal incubation times for the aptamer, blocking agent, and target molecule, which were found to be 180 min, 40 min, and 89 min, respectively. The response of the aptamer to different concentrations of patulin was measured using square wave voltammetry by exploiting the structural switching mechanism. The sensor response was determined by quantifying differences in the aptasensor's background current. The aptasensor exhibited a linear working range of 1-25 μM and a low detection limit of 3.56 ng/mL for patulin. The aptasensor's relative standard deviation and accuracy were determined to be 0.067 and 94.4%, respectively. A non-specific interaction was observed at low concentrations of two other mycotoxins, ochratoxin A and zearalenone. The interference from ochratoxin A in the measurements was below 10%. In real sample tests using apple juice, interference, particularly at low concentrations, had changed the recovery of patulin negatively with a significant effect on the structural switching behavior. Nevertheless, at a concentration of 25 ng/mL, the interference effect was eliminated, and the recovery standard deviation improved to 6.6%. The aptasensor's stability was evaluated over 10 days, and it demonstrated good performance, retaining 13.12% of its initial response. These findings demonstrate the potential of the developed electrochemical aptasensor for the sensitive detection of patulin in fruit-based products, with prospects for application in food safety and quality control.
Collapse
Affiliation(s)
- Netice Küçük
- Bilecik Seyh Edebali University, Department of Biotechnology, Bilecik, Turkey.
| | - Şevval Kaya
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK.
| | - Samet Şahin
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK; Bilecik Seyh Edebali University, Department of Bioengineering, Bilecik, Turkey.
| | | |
Collapse
|
3
|
Douaki A, Stuber A, Hengsteler J, Momotenko D, Rogers DM, Rocchia W, Hirst JD, Nakatsuka N, Garoli D. Theoretical analysis of divalent cation effects on aptamer recognition of neurotransmitter targets. Chem Commun (Camb) 2023; 59:14713-14716. [PMID: 37997814 DOI: 10.1039/d3cc04334g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Aptamer-based sensing of small molecules such as dopamine and serotonin in the brain, requires characterization of the specific aptamer sequences in solutions mimicking the in vivo environment with physiological ionic concentrations. In particular, divalent cations (Mg2+ and Ca2+) present in brain fluid, have been shown to affect the conformational dynamics of aptamers upon target recognition. Thus, for biosensors that transduce aptamer structure switching as the signal response, it is critical to interrogate the influence of divalent cations on each unique aptamer sequence. Herein, we demonstrate the potential of molecular dynamics (MD) simulations to predict the behaviour of dopamine and serotonin aptamers on sensor surfaces. The simulations enable molecular-level visualization of aptamer conformational changes that, in some cases, are significantly influenced by divalent cations. The correlations of theoretical simulations with experimental findings validate the potential for MD simulations to predict aptamer-specific behaviors on biosensors.
Collapse
Affiliation(s)
- Ali Douaki
- Istituto Italiano di Tecnologia, Via Morego 30, Genova 16136, Italy.
| | - Annina Stuber
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092, Switzerland.
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092, Switzerland.
| | - Dmitry Momotenko
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg D-26129, Germany
| | - David M Rogers
- School of Chemistry | University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Walter Rocchia
- Istituto Italiano di Tecnologia, Via Morego 30, Genova 16136, Italy.
| | - Jonathan D Hirst
- School of Chemistry | University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, CH-8092, Switzerland.
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego 30, Genova 16136, Italy.
- Dip. di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, via Amendola 2, Reggio Emilia 42122, Italy
| |
Collapse
|
4
|
P U A, Raj G, John J, Mohan K M, John F, George J. Aptamers: Features, Synthesis and Applications. Chem Biodivers 2023; 20:e202301008. [PMID: 37709723 DOI: 10.1002/cbdv.202301008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.
Collapse
Affiliation(s)
- Aiswarya P U
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Gopika Raj
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinju John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Malavika Mohan K
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
5
|
Alnaimi A, Al-Hamry A, Makableh Y, Adiraju A, Kanoun O. Gold Nanoparticles-MWCNT Based Aptasensor for Early Diagnosis of Prostate Cancer. BIOSENSORS 2022; 12:1130. [PMID: 36551097 PMCID: PMC9776393 DOI: 10.3390/bios12121130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Prostate cancer is one of the most frequently diagnosed male malignancies and can be detected by prostate-specific antigen (PSA) as a biomarker. To detect PSA, several studies have proposed using antibodies, which are not economical and require a long reaction time. In this study, we propose to use self-assembled thiolated single-strand DNA on electrodes functionalized by multi-walled carbon nanotubes (MWCNT) modified with gold nanoparticles (AuNPs) to realize a low-cost label-free electrochemical biosensor. In this regard, the PSA aptamer was immobilized via electrostatic adsorption on the surface of a screen-printed MWCNT/AuNPs electrode. The immobilization process was enhanced due to the presence of Au nanoparticles on the surface of the electrode. Surface characterization of the electrode at different stages of modification was performed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) and contact angle for surface tension properties. The results showed an increase in surface roughness due to the absorbance of the aptamer on the electrode surfaces. The developed sensor has an extended linear range of 1-100 ng/mL, and a very low limit of detection down to 1 pg/mL. In addition, the reaction has a binding time of only five minutes on the developed electrodes. Investigations of the biosensor selectivity against several substances revealed an efficient selectivity for PSA detection. With this approach, low-cost biosensors with high sensitivity can be realized which have a wide linearity range and a low limit of detection, which are necessary for the early detection of prostate cancer.
Collapse
Affiliation(s)
- Aseel Alnaimi
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Yahia Makableh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| |
Collapse
|