1
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
2
|
Komori T, Kram V, Perry S, Pham H, Jani P, Kilts T, Watanabe K, Kim D, Martin D, Young M. Type VI Collagen Deficiency Causes Enhanced Periodontal Tissue Destruction. J Dent Res 2024; 103:878-888. [PMID: 38910439 PMCID: PMC11377870 DOI: 10.1177/00220345241256306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
The periodontal ligament (PDL) is a fibrillar connective tissue that lies between the alveolar bone and the tooth and is composed of highly specialized extracellular matrix (ECM) molecules and a heterogeneous population of cells that are responsible for collagen formation, immune response, bone formation, and chewing force sensation. Type VI collagen (COL6), a widely distributed ECM molecule, plays a critical role in the structural integrity and mechanical properties of various tissues including muscle, tendon, bone, cartilage, and skin. However, its role in the PDL remains largely unknown. Our study shows that deficiency of COL6 impairs PDL fibrillogenesis and exacerbates tissue destruction in ligature-induced periodontitis (LIP). We found that COL6-deficient mice exhibited increased bone loss and degraded PDL in LIP and that fibroblasts expressing high levels of Col6α2 are pivotal in ECM organization and cell-ECM interactions. Moreover, COL6 deficiency in the PDL led to an increased number of fibroblasts geared toward the inflammatory response. We also observed that cultured COL6-deficient fibroblasts from the PDL exhibited decreased expression of genes related to collagen fiber turnover and ECM organization as well as migration and proliferation. Our findings suggest that COL6 plays a crucial role in the PDL, influencing fibroblast function in fibrillogenesis and affecting the immune response in periodontitis. These insights advance our understanding of the molecular mechanisms underlying PDL maturation and periodontal disease.
Collapse
Affiliation(s)
- T. Komori
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - V. Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - S. Perry
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - H.T. Pham
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
- Hai Phong University of Medicine and Pharmacy, Faculty of Dentistry, Haiphong, Vietnam
| | - P. Jani
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - T.M. Kilts
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| | - K. Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D.G. Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - D. Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institutes of Health, Bethesda, MD, USA
| | - M.F. Young
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Lin S, Marvidou AM, Novak R, Moreinos D, Abbott PV, Rotstein I. Pathogenesis of non-infection related inflammatory root resorption in permanent teeth: A narrative review. Int Endod J 2023; 56:1432-1445. [PMID: 37712904 DOI: 10.1111/iej.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The mechanism of action of root resorption in a permanent tooth can be classified as infection-related (e.g., microbial infection) or non-infection-related (e.g., sterile damage). Infection induced root resorption occurs due to bacterial invasion. Non-infection-related root resorption stimulates the immune system through a different mechanism. OBJECTIVES The aim of this narrative review is to describe the pathophysiologic process of non-infection-related inflammatory processes involved in root resorption of permanent teeth. METHODS A literature search on root resorption was conducted using Scopus (PubMed and Medline) and Google Scholar databases to highlight the pathophysiology of bone and root resorption in non-infection-related situations. The search included key words covering the relevant category. It included in vitro and in vivo studies, systematic reviews, case series, reviews, and textbooks in English. Conference proceedings, lectures and letters to the editor were excluded. RESULTS Three types of root resorption are related to the non-infection mechanism of action, which includes surface resorption due to either trauma or excessive orthodontic forces, external replacement resorption and external cervical resorption. The triggers are usually damage associated molecular patterns and hypoxia conditions. During this phase macrophages and clastic cells act to eliminate the damaged tissue and bone, eventually enabling root resorption and bone repair as part of wound healing. DISCUSSION The resorption of the root occurs during the inflammatory phase of wound healing. In this phase, damaged tissues are recognized by macrophages and neutrophiles that secrete interlaukines such as TNF-α, IL-1, IL-6, IL-8. Together with the hypoxia condition that accelarates the secretion of growth factors, the repair of the damaged perioduntiom, including damaged bone, is initiated. If the precementum and cementoblast are injured, root resorption can occur. CONCLUSIONS Wound healing exhibits different patterns of action that involves immune stimulation in a bio-physiological activity, that occurs in the proper sequence, with overlapping phases. Two pathologic conditions, DAMPs and hypoxia, can activate the immune cells including clastic cells, eliminating damaged tissue and bone. Under certain conditions, root resorption occurs as a side effect.
Collapse
Affiliation(s)
- Shaul Lin
- The Israeli National Center for Trauma & Emergency Medicine Research, Gertner Institute, Tel Hashomer, Israel
- Department of Endodontics, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Athina M Marvidou
- Department of Endodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - Rostislav Novak
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Orthopedic Department, Orthopedic Oncology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Moreinos
- Endodontic Department, Galilee Medical Center, Nahariya, Israel
| | - Paul Vincent Abbott
- UWA Dental School, The University of Western Australia, Western Australia, Nedlands, Australia
| | - Ilan Rotstein
- University of Southern California, California, Los Angeles, USA
| |
Collapse
|
4
|
Wu S, Zhang L, Zhang R, Yang K, Wei Q, Jia Q, Guo J, Ma C. Rat bone marrow mesenchymal stem cells induced by rrPDGF-BB promotes bone regeneration during distraction osteogenesis. Front Bioeng Biotechnol 2023; 11:1110703. [PMID: 36959901 PMCID: PMC10027703 DOI: 10.3389/fbioe.2023.1110703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background: In the clinical treatment of large bone defects, distraction osteogenesis can be used. However, some patients may suffer from poor bone regeneration, or even delayed healing or non-union. Problems with the aggregation and proliferation of primary osteoblasts, or problems with the differentiation of primary osteoblasts will lead to poor bone regeneration. Therefore, supplementing exogenous primary osteoblasts and growth factors when using distraction osteogenesis may be a treatment plan with great potential. Methods: Bone marrow mesenchymal stem cells (BMSCs) were extracted from rats and cultured. Subsequently, Recombinant Rat Platelet-derived Growth Factor BB (rrPDGF-BB) was used to induce bone marrow mesenchymal stem cells. At the same time, male adult rats were selected to make the right femoral distraction osteogenesis model. During the mineralization period, phosphate buffer salt solution (control group), non-induction bone marrow mesenchymal stem cells (group 1) and recombinant rat platelet-derived growth factor BB intervened bone marrow mesenchymal stem cells (group 2) were injected into the distraction areas of each group. Then, the experimental results were evaluated with imaging and histology. Statistical analysis of the data showed that the difference was statistically significant if p < 0.05. Results: After intervention with recombinant rat platelet-derived growth factor BB on bone marrow mesenchymal stem cells, the cell morphology changed into a thin strip. After the cells were injected in the mineralization period, the samples showed that the callus in group 2 had greater hardness and the color close to the normal bone tissue; X-ray examination showed that there were more new callus in the distraction space of group 2; Micro-CT examination showed that there were more new bone tissues in group 2; Micro-CT data at week eight showed that the tissue volume, bone volume, percent bone volume, bone trabecular thickness, bone trabecular number and bone mineral density in group 2 were the largest, and the bone trabecular separation in group 2 was the smallest. There was a statistical difference between the groups (p < 0.05); HE staining confirmed that group 2 formed more blood vessels and chondrocytes earlier than the control group. At 8 weeks, the bone marrow cavity of group 2 was obvious, and some of them had been fused. Conclusion: The study confirmed that injecting bone marrow mesenchymal stem cellsBB into the distraction space of rats can promote the formation of new bone in the distraction area and promote the healing of distraction osteogenesis.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lijie Zhang
- Department of Neurology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ruidan Zhang
- Guangdong New Omega Medical Centre, Guangzhou, China
| | - Kang Yang
- Hand and foot microsurgery of the third people’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qin Wei
- Animal Experiment Center of Xinjiang Medical University, Urumqi, China
| | - Qiyu Jia
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Guo
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Microrepair and Reconstruction, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chuang Ma,
| |
Collapse
|
5
|
Ideno H, Komatsu K, Nakashima K, Nifuji A. Tooth transplantation and replantation: Biological insights towards therapeutic improvements. Genesis 2022; 60:e23496. [PMID: 35916605 DOI: 10.1002/dvg.23496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/06/2022]
Abstract
Transplantation and replantation of teeth are effective therapeutic approaches for tooth repositioning and avulsion, respectively. Transplantation involves transplanting an extracted tooth from the original site into another site, regenerating tissue including the periodontal ligament (PDL) and alveolar bone, around the transplanted tooth. Replantation places the avulsed tooth back to its original site, regenerating functional periodontal tissue. In clinical settings, transplantation and replantation result in favorable outcomes with regenerated PDL tissue in many cases. However, they often result in poor outcomes with two major complications: tooth ankylosis and root resorption. In tooth ankylosis, the root surface and alveolar bone are fused, reducing the PDL tissue between them. The root is subjected to remodeling processes and is partially replaced by bone. In severe cases, the resorbed root is completely replaced by bone tissue, which is called as "replacement resorption." Resorption is sometimes accompanied by infection-mediated inflammation. The molecular mechanisms of ankylosis and root resorption remain unclear, although some signaling mechanisms have been proposed. In this mini-review, we summarized the biological basis of repair mechanisms of tissues in transplantation and replantation and the pathogenesis of their healing failure. We also discussed possible therapeutic interventions to improve treatment success rates.
Collapse
Affiliation(s)
- Hisashi Ideno
- Department of Pharmacology, School of Dental Medicine Tsurumi University, Yokohama, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, School of Dental Medicine Tsurumi University, Yokohama, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, School of Dental Medicine Tsurumi University, Yokohama, Japan
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine Tsurumi University, Yokohama, Japan
| |
Collapse
|
6
|
Guo H, Bai X, Wang X, Qiang J, Sha T, Shi Y, Zheng K, Yang Z, Shi C. Development and regeneration of periodontal supporting tissues. Genesis 2022; 60:e23491. [PMID: 35785409 DOI: 10.1002/dvg.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Periodontal tissues, including gingiva, cementum, periodontal ligament, and alveolar bone, play important roles in oral health. Under physiological conditions, periodontal tissues surround and support the teeth, maintaining the stability of the teeth and distributing the chewing forces. However, under pathological conditions, with the actions of various pathogenic factors, the periodontal tissues gradually undergo some irreversible changes, that is, gingival recession, periodontal ligament rupture, periodontal pocket formation, alveolar bone resorption, eventually leading to the loosening and even loss of the teeth. Currently, the regenerations of the periodontal tissues are still challenging. Therefore, it is necessary to study the development of the periodontal tissues, the principles and processes of which can be used to develop new strategies for the regeneration of periodontal tissues. This review summarizes the development of periodontal tissues and current strategies for periodontal healing and regeneration.
Collapse
Affiliation(s)
- Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xueying Bai
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Xiaoling Wang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jinbiao Qiang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Tong Sha
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yan Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Kaijuan Zheng
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhenming Yang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
7
|
Novel In Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061286. [PMID: 35745858 PMCID: PMC9230656 DOI: 10.3390/pharmaceutics14061286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4′,6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.
Collapse
|