1
|
Saxena S, Bench C, Garg D, Boardman P, Mrnka M, Penketh H, Stone N, Hendry E. Limitations of effective medium models for tissue phantoms in the THz frequency range. Sci Rep 2024; 14:22968. [PMID: 39362921 PMCID: PMC11450206 DOI: 10.1038/s41598-024-70590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
The absorption of terahertz (THz) radiation by water molecules facilitates its application to several biomedical applications such as cancer detection. Therefore, it is critical for the THz technologies to be characterised with water content in a sample. In this paper, we analyse gelatine phantoms in the THz frequency range, with continuously varying hydration levels as they dry over time. Water molecules in close proximity to the protein molecule, termed 'bound water', feature properties different from the 'free water' molecules at larger distances. We find that a common model for predicting electromagnetic properties of phantoms and tissue samples, which assumes that only the free water varies with hydration while the bound water remains constant, does not agree well with measured results. To gain insight into this behaviour, we simultaneously measured the phantom in Raman spectroscopy, which shows a continuously varying concentration of bound water with hydration level. It follows from this investigation, that the permittivity contributions of neither the biomolecules nor water are expected to be linear with water density. This means that the often used, simple effective medium model will not be accurate for many biological tissues or phantoms.
Collapse
Affiliation(s)
- Sonal Saxena
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
| | - Ciaran Bench
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Diksha Garg
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Patric Boardman
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Michal Mrnka
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Harry Penketh
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Euan Hendry
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| |
Collapse
|
2
|
Schreiner OD, Socotar D, Ciobanu RC, Schreiner TG, Tamba BI. Statistical Analysis of Gastric Cancer Cells Response to Broadband Terahertz Radiation with and without Contrast Nanoparticles. Cancers (Basel) 2024; 16:2454. [PMID: 39001516 PMCID: PMC11240478 DOI: 10.3390/cancers16132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The paper describes the statistical analysis of the response of gastric cancer cells and normal cells to broadband terahertz radiation up to 4 THz, both with and without the use of nanostructured contrast agents. The THz spectroscopy analysis was comparatively performed under the ATR procedure and transmission measurement procedure. The statistical analysis was conducted towards multiple pairwise comparisons, including a support medium (without cells) versus a support medium with nanoparticles, normal cells versus normal cells with nanoparticles, and, respectively, tumor cells versus tumor cells with nanoparticles. When generally comparing the ATR procedure and transmission measurement procedure for a broader frequency domain, the differentiation between normal and tumor cells in the presence of contrast agents is superior when using the ATR procedure. THz contrast enhancement by using contrast agents derived from MRI-related contrast agents leads to only limited benefits and only for narrow THz frequency ranges, a disadvantage for THz medical imaging.
Collapse
Affiliation(s)
- Oliver Daniel Schreiner
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania; (O.D.S.); (D.S.)
| | - Diana Socotar
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania; (O.D.S.); (D.S.)
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania; (O.D.S.); (D.S.)
| | - Thomas Gabriel Schreiner
- CEMEX-Center for Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700259 Iasi, Romania (B.I.T.)
| | - Bogdan Ionel Tamba
- CEMEX-Center for Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700259 Iasi, Romania (B.I.T.)
| |
Collapse
|
3
|
Reyes-Reyes ES, Carriles-Jaimes R, D'Angelo E, Nazir S, Koch-Dandolo CL, Kuester F, Jepsen PU, Castro-Camus E. Terahertz time-domain imaging for the examination of gilded wooden artifacts. Sci Rep 2024; 14:6261. [PMID: 38491131 PMCID: PMC10943006 DOI: 10.1038/s41598-024-56913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Terahertz imaging is unlocking unique capabilities for the analysis of cultural heritage artifacts. This paper uses terahertz time-domain imaging for the study of a gilded wooden artifact, providing a means to perform stratigraphic analysis, yielding information about the composition of the artifact, presence of certain materials identifiable through their THz spectral fingerprint, as well as alterations that have been performed over time. Due to the limited information that is available for many historic artifacts, the data that can be obtained through the presented technique can guide proper stewardship of the artifact, informing its long-term preservation.
Collapse
Affiliation(s)
- Edgar Santiago Reyes-Reyes
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Lomas del Campestre, 37150, León, GTO, Mexico
| | - Ramón Carriles-Jaimes
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Lomas del Campestre, 37150, León, GTO, Mexico.
| | - Emanuele D'Angelo
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Saad Nazir
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
| | - Corinna Ludovica Koch-Dandolo
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Lomas del Campestre, 37150, León, GTO, Mexico
- University of Applied Science and Arts of Southern Switzerland, Le Gerre, Via Pobiette 11., 6928, Manno, Switzerland
| | - Falko Kuester
- Department of Structural Engineering, University of California, San Diego 9500, Gilman Dr, La Jolla, CA, 92093, USA
| | - Peter Uhd Jepsen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Enrique Castro-Camus
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Lomas del Campestre, 37150, León, GTO, Mexico.
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany.
| |
Collapse
|
4
|
Zhang D, Li L, Zhang J, Ren J, Gu J, Li L, Jiang B, Zhang S. Quantitative Detection of Defects in Multi-Layer Lightweight Composite Structures Using THz-TDS Based on a U-Net-BiLSTM Network. MATERIALS (BASEL, SWITZERLAND) 2024; 17:839. [PMID: 38399090 PMCID: PMC10890636 DOI: 10.3390/ma17040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Multi-layer lightweight composite structures are widely used in the field of aviation and aerospace during the processes of manufacturing and use, and, as such, they inevitably produce defects, damage, and other quality problems, creating the need for timely non-destructive testing procedures and the convenient repair or replacement of quality problems related to the material. When using terahertz non-destructive testing technology to detect defects in multi-layer lightweight composite materials, due to the complexity of their structure and defect types, there are many signal characteristics of terahertz waves propagating in the structures, and there is no obvious rule behind them, resulting in a large gap between the recognition results and the actual ones. In this study, we introduced a U-Net-BiLSTM network that combines the strengths of the U-Net and BiLSTM networks. The U-Net network extracts the spatial features of THz signals, while the BiLSTM network captures their temporal features. By optimizing the network structure and various parameters, we obtained a model tailored to THz spectroscopy data. This model was subsequently employed for the identification and quantitative analysis of defects in multi-layer lightweight composite structures using THz non-destructive testing. The proposed U-Net-BiLSTM network achieved an accuracy of 99.45% in typical defect identification, with a comprehensive F1 score of 99.43%, outperforming the CNN, ResNet, U-Net, and BiLSTM networks. By leveraging defect classification and thickness recognition, this study successfully reconstructed three-dimensional THz defect images, thereby realizing quantitative defect detection.
Collapse
Affiliation(s)
- Dandan Zhang
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Lulu Li
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Jiyang Zhang
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Jiaojiao Ren
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Jian Gu
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Lijuan Li
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Baihong Jiang
- Institute of Aerospace Special Materials and Technology, Beijing 100074, China
| | - Shida Zhang
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| |
Collapse
|
5
|
Wang J, Chen S, Qiu Y, Chen X, Shen J, Li C. Chiral Metasurface Multifocal Lens in the Terahertz Band Based on Deep Learning. MICROMACHINES 2023; 14:1925. [PMID: 37893362 PMCID: PMC10608832 DOI: 10.3390/mi14101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Chiral metasurfaces have garnered significant interest as an emerging field of metamaterials, primarily due to their exceptional capability to manipulate phase distributions at interfaces. However, the on-demand design of chiral metasurface structures remains a challenging task. To address this challenge, this paper introduces a deep learning-based network model for rapid calculation of chiral metasurface structure parameters. The network achieves a mean absolute error (MAE) of 0.025 and enables the design of chiral metasurface structures with a circular dichroism (CD) of 0.41 at a frequency of 1.169 THz. By changing the phase of the chiral metasurface, it is possible to produce not only a monofocal lens but also a multifocal lens. Well-designed chiral metasurface lenses allow us to control the number and position of focal points of the light field. This chiral metasurface, designed using deep learning, demonstrates great multifocal focus characteristics and holds great potential for a wide range of applications in sensing and holography.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China; (J.W.); (S.C.); (Y.Q.); (X.C.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Sixue Chen
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China; (J.W.); (S.C.); (Y.Q.); (X.C.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yihang Qiu
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China; (J.W.); (S.C.); (Y.Q.); (X.C.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiaoying Chen
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China; (J.W.); (S.C.); (Y.Q.); (X.C.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jian Shen
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China; (J.W.); (S.C.); (Y.Q.); (X.C.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chaoyang Li
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China; (J.W.); (S.C.); (Y.Q.); (X.C.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Chernomyrdin NV, Il'enkova DR, Zhelnov VA, Alekseeva AI, Gavdush AA, Musina GR, Nikitin PV, Kucheryavenko AS, Dolganova IN, Spektor IE, Tuchin VV, Zaytsev KI. Quantitative polarization-sensitive super-resolution solid immersion microscopy reveals biological tissues' birefringence in the terahertz range. Sci Rep 2023; 13:16596. [PMID: 37789192 PMCID: PMC10547778 DOI: 10.1038/s41598-023-43857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Terahertz (THz) technology offers a variety of applications in label-free medical diagnosis and therapy, majority of which rely on the effective medium theory that assumes biological tissues to be optically isotropic and homogeneous at the scale posed by the THz wavelengths. Meanwhile, most recent research discovered mesoscale ([Formula: see text]) heterogeneities of tissues; [Formula: see text] is a wavelength. This posed a problem of studying the related scattering and polarization effects of THz-wave-tissue interactions, while there is still a lack of appropriate tools and instruments for such studies. To address this challenge, in this paper, quantitative polarization-sensitive reflection-mode THz solid immersion (SI) microscope is developed, that comprises a silicon hemisphere-based SI lens, metal-wire-grid polarizer and analyzer, a continuous-wave 0.6 THz ([Formula: see text] µm) backward-wave oscillator (BWO), and a Golay detector. It makes possible the study of local polarization-dependent THz response of mesoscale tissue elements with the resolution as high as [Formula: see text]. It is applied to retrieve the refractive index distributions over the freshly-excised rat brain for the two orthogonal linear polarizations of the THz beam, aimed at uncovering the THz birefringence (structural optical anisotropy) of tissues. The most pronounced birefringence is observed for the Corpus callosum, formed by well-oriented and densely-packed axons bridging the cerebral hemispheres. The observed results are verified by the THz pulsed spectroscopy of the porcine brain, which confirms higher refractive index of the Corpus callosum when the THz beam is polarized along axons. Our findings highlight a potential of the quantitative polarization THz microscopy in biophotonics and medical imaging.
Collapse
Affiliation(s)
- N V Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991.
| | - D R Il'enkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - V A Zhelnov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - A I Alekseeva
- Research Institute of Human Morphology, Moscow, Russia, 117418
| | - A A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - G R Musina
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - P V Nikitin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - A S Kucheryavenko
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - I N Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - I E Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991
| | - V V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russia, 410012
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia, 634050
| | - K I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 119991.
| |
Collapse
|
7
|
Chen VY, Siegfried LG, Tomic-Canic M, Stone RC, Pastar I. Cutaneous changes in diabetic patients: Primed for aberrant healing? Wound Repair Regen 2023; 31:700-712. [PMID: 37365017 PMCID: PMC10966665 DOI: 10.1111/wrr.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/28/2023]
Abstract
Cutaneous manifestations affect most patients with diabetes mellitus, clinically presenting with numerous dermatologic diseases from xerosis to diabetic foot ulcers (DFUs). Skin conditions not only impose a significantly impaired quality of life on individuals with diabetes but also predispose patients to further complications. Knowledge of cutaneous biology and the wound healing process under diabetic conditions is largely limited to animal models, and studies focusing on biology of the human condition of DFUs remain limited. In this review, we discuss the critical molecular, cellular, and structural changes to the skin in the hyperglycaemic and insulin-resistant environment of diabetes with a focus specifically on human-derived data. Elucidating the breadth of the cutaneous manifestations coupled with effective diabetes management is important for improving patient quality of life and averting future complications including wound healing disorders.
Collapse
Affiliation(s)
- Vivien Y Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lindsey G Siegfried
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
8
|
Helminiak J, Alfaro-Gomez M, Hernandez-Cardoso GG, Koch M, Castro-Camus E. Temperature dependence of the dielectric function of dehydrated biological samples in the THz band. BIOMEDICAL OPTICS EXPRESS 2023; 14:1472-1479. [PMID: 37078026 PMCID: PMC10110306 DOI: 10.1364/boe.478787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Terahertz technology has demonstrated enormous potential for the analysis of biological systems and the diagnosis of some medical conditions, given its high sensitivity to detect water content. In previously published papers, effective medium theories are used to extract the water content from the terahertz measurements. When the dielectric functions of water and dehydrated bio-material are well known, the volumetric fraction of water can be left as the only free parameter in those effective medium theory models. While water complex permittivity is very well known, the dielectric functions of dehydrated tissues are normally measured for each individual application. In previous studies, it has been traditionally assumed that, unlike water, the dielectric function of the dehydrated tissues is temperature independent, measuring it only at room temperature. Yet, this is an aspect that has not been discussed and that is relevant in order to get THz technology closer to clinical and in-the-field applications. In this work, we present the characterization of the complex permittivity of dehydrated tissues; each studied at temperatures ranging from 20°C to 36.5°C. We studied samples of different organism classifications to have a wider confirmation of the results. We find that, in each case, the dielectric function changes of dehydrated tissues caused by temperature are smaller than for water across the same temperature interval. Yet, the changes in the dielectric function of the dehydrated tissue are not negligible and should, in many cases, be taken into account for the processing of terahertz signals that interact with biological tissues. While this study gives a first introduction into the probable relevancy of temperature-dependent optical behavior of biological samples, this work only focuses on the experimental proof for this relationship and will, therefore, not give a deeper analysis of how the underlying models have to be modified.
Collapse
Affiliation(s)
- Jan Helminiak
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Mariana Alfaro-Gomez
- Universidad Autonoma de Aguascalientes, Av. Universidad 940, Cd. Universitaria, 20100, Aguascalientes, Mexico
| | - Goretti G. Hernandez-Cardoso
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Enrique Castro-Camus
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| |
Collapse
|
9
|
Azarova I, Klyosova E, Polonikov A. Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes. Biomedicines 2023; 11:biomedicines11030981. [PMID: 36979960 PMCID: PMC10046239 DOI: 10.3390/biomedicines11030981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired redox homeostasis. The present study was designed to determine whether the common SNPs of the RAC1 gene are associated with diabetic complications such as neuropathy (DN), retinopathy (DR), nephropathy, angiopathy of the lower extremities (DA), and diabetic foot syndrome. A total of 1470 DNA samples from T2D patients were genotyped for six common SNPs by the MassArray Analyzer-4 system. The genotype rs7784465-T/C of RAC1 was associated with an increased risk of DR (p = 0.016) and DA (p = 0.03) in males, as well as with DR in females (p = 0.01). Furthermore, the SNP rs836478 showed an association with DR (p = 0.005) and DN (p = 0.025) in males, whereas the SNP rs10238136 was associated with DA in females (p = 0.002). In total, three RAC1 haplotypes showed significant associations (FDR < 0.05) with T2D complications in a sex-specific manner. The study's findings demonstrate, for the first time, that the RAC1 gene's polymorphisms represent novel and sex-specific markers of neuropathy and microvascular complications in type 2 diabetes, and that the gene could be a new target for the pharmacological inhibition of oxidative stress as a means of preventing diabetic complications.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia
| |
Collapse
|
10
|
Khani ME, Harris ZB, Osman OB, Singer AJ, Hassan Arbab M. Triage of in vivo burn injuries and prediction of wound healing outcome using neural networks and modeling of the terahertz permittivity based on the double Debye dielectric parameters. BIOMEDICAL OPTICS EXPRESS 2023; 14:918-931. [PMID: 36874480 PMCID: PMC9979665 DOI: 10.1364/boe.479567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The initial assessment of the depth of a burn injury during triage forms the basis for determination of the course of the clinical treatment plan. However, severe skin burns are highly dynamic and hard to predict. This results in a low accuracy rate of about 60 - 75% in the diagnosis of partial-thickness burns in the acute post-burn period. Terahertz time-domain spectroscopy (THz-TDS) has demonstrated a significant potential for non-invasive and timely estimation of the burn severity. Here, we describe a methodology for the measurement and numerical modeling of the dielectric permittivity of the in vivo porcine skin burns. We use the double Debye dielectric relaxation theory to model the permittivity of the burned tissue. We further investigate the origins of dielectric contrast between the burns of various severity, as determined histologically based on the percentage of the burned dermis, using the empirical Debye parameters. We demonstrate that the five parameters of the double Debye model can form an artificial neural network classification algorithm capable of automatic diagnosis of the severity of the burn injuries, and predicting its ultimate wound healing outcome by forecasting its re-epithelialization status in 28 days. Our results demonstrate that the Debye dielectric parameters provide a physics-based approach for the extraction of the biomedical diagnostic markers from the broadband THz pulses. This method can significantly boost dimensionality reduction of THz training data in artificial intelligence models and streamline machine learning algorithms.
Collapse
Affiliation(s)
- Mahmoud E. Khani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachery B. Harris
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Omar B. Osman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Adam J. Singer
- Department of Emergency Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - M. Hassan Arbab
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Martins IS, Silva HF, Lazareva EN, Chernomyrdin NV, Zaytsev KI, Oliveira LM, Tuchin VV. Measurement of tissue optical properties in a wide spectral range: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:249-298. [PMID: 36698664 PMCID: PMC9841994 DOI: 10.1364/boe.479320] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.
Collapse
Affiliation(s)
- Inês S. Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Hugo F. Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | | | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Luís M. Oliveira
- Physics Department, Polytechnic of Porto – School of Engineering (ISEP), Porto, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
12
|
Gezimati M, Singh G. Advances in terahertz technology for cancer detection applications. OPTICAL AND QUANTUM ELECTRONICS 2022; 55:151. [PMID: 36588663 PMCID: PMC9791634 DOI: 10.1007/s11082-022-04340-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 06/12/2023]
Abstract
Currently, there is an increasing demand for the diagnostic techniques that provide functional and morphological information with early cancer detection capability. Novel modern medical imaging systems driven by the recent advancements in technology such as terahertz (THz) and infrared radiation-based imaging technologies which are complementary to conventional modalities are being developed, investigated, and validated. The THz cancer imaging techniques offer novel opportunities for label free, non-ionizing, non-invasive and early cancer detection. The observed image contrast in THz cancer imaging studies has been mostly attributed to higher refractive index, absorption coefficient and dielectric properties in cancer tissue than that in the normal tissue due the local increase of the water molecule content in tissue and increased blood supply to the cancer affected tissue. Additional image contrast parameters and cancer biomarkers that have been reported to contribute to THz image contrast include cell structural changes, molecular density, interactions between agents (e.g., contrast agents and embedding agents) and biological tissue as well as tissue substances like proteins, fiber and fat etc. In this paper, we have presented a systematic and comprehensive review of the advancements in the technological development of THz technology for cancer imaging applications. Initially, the fundamentals principles and techniques for THz radiation generation and detection, imaging and spectroscopy are introduced. Further, the application of THz imaging for detection of various cancers tissues are presented, with more focus on the in vivo imaging of skin cancer. The data processing techniques for THz data are briefly discussed. Also, we identify the advantages and existing challenges in THz based cancer detection and report the performance improvement techniques. The recent advancements towards THz systems which are optimized and miniaturized are also reported. Finally, the integration of THz systems with artificial intelligent (AI), internet of things (IoT), cloud computing, big data analytics, robotics etc. for more sophisticated systems is proposed. This will facilitate the large-scale clinical applications of THz for smart and connected next generation healthcare systems and provide a roadmap for future research.
Collapse
Affiliation(s)
- Mavis Gezimati
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| | - Ghanshyam Singh
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| |
Collapse
|
13
|
Chen A, Harris ZB, Virk A, Abazari A, Varadaraj K, Honkanen R, Arbab MH. Assessing Corneal Endothelial Damage Using Terahertz Time-Domain Spectroscopy and Support Vector Machines. SENSORS (BASEL, SWITZERLAND) 2022; 22:9071. [PMID: 36501773 PMCID: PMC9735956 DOI: 10.3390/s22239071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The endothelial layer of the cornea plays a critical role in regulating its hydration by actively controlling fluid intake in the tissue via transporting the excess fluid out to the aqueous humor. A damaged corneal endothelial layer leads to perturbations in tissue hydration and edema, which can impact corneal transparency and visual acuity. We utilized a non-contact terahertz (THz) scanner designed for imaging spherical targets to discriminate between ex vivo corneal samples with intact and damaged endothelial layers. To create varying grades of corneal edema, the intraocular pressures of the whole porcine eye globe samples (n = 19) were increased to either 25, 35 or 45 mmHg for 4 h before returning to normal pressure levels at 15 mmHg for the remaining 4 h. Changes in tissue hydration were assessed by differences in spectral slopes between 0.4 and 0.8 THz. Our results indicate that the THz response of the corneal samples can vary according to the differences in the endothelial cell density, as determined by SEM imaging. We show that this spectroscopic difference is statistically significant and can be used to assess the intactness of the endothelial layer. These results demonstrate that THz can noninvasively assess the corneal endothelium and provide valuable complimentary information for the study and diagnosis of corneal diseases that perturb the tissue hydration.
Collapse
Affiliation(s)
- Andrew Chen
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Zachery B. Harris
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Arjun Virk
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Azin Abazari
- Department of Ophthalmology, Renaissance School of Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Kulandaiappan Varadaraj
- Department of Physiology and Biophysics, Renaissance School of Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Robert Honkanen
- Department of Ophthalmology, Renaissance School of Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Mohammad Hassan Arbab
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Khani ME, Osman OB, Harris ZB, Chen A, Zhou JW, Singer AJ, Arbab MH. Accurate and early prediction of the wound healing outcome of burn injuries using the wavelet Shannon entropy of terahertz time-domain waveforms. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220119GR. [PMID: 36348509 PMCID: PMC9641274 DOI: 10.1117/1.jbo.27.11.116001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 05/06/2023]
Abstract
Significance Severe burn injuries cause significant hypermetabolic alterations that are highly dynamic, hard to predict, and require acute and critical care. The clinical assessments of the severity of burn injuries are highly subjective and have consistently been reported to be inaccurate. Therefore, the utilization of other imaging modalities is crucial to reaching an objective and accurate burn assessment modality. Aim We describe a non-invasive technique using terahertz time-domain spectroscopy (THz-TDS) and the wavelet packet Shannon entropy to automatically estimate the burn depth and predict the wound healing outcome of thermal burn injuries. Approach We created 40 burn injuries of different severity grades in two porcine models using scald and contact methods of infliction. We used our THz portable handheld spectral reflection (PHASR) scanner to obtain the in vivo THz-TDS images. We used the energy to Shannon entropy ratio of the wavelet packet coefficients of the THz-TDS waveforms on day 0 to create supervised support vector machine (SVM) classification models. Histological assessments of the burn biopsies serve as the ground truth. Results We achieved an accuracy rate of 94.7% in predicting the wound healing outcome, as determined by histological measurement of the re-epithelialization rate on day 28 post-burn induction, using the THz-TDS measurements obtained on day 0. Furthermore, we report the accuracy rates of 89%, 87.1%, and 87.6% in automatic diagnosis of the superficial partial-thickness, deep partial-thickness, and full-thickness burns, respectively, using a multiclass SVM model. Conclusions The THz PHASR scanner promises a robust, high-speed, and accurate diagnostic modality to improve the clinical triage of burns and their management.
Collapse
Affiliation(s)
- Mahmoud E. Khani
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Omar B. Osman
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Zachery B. Harris
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Andrew Chen
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Juin W. Zhou
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Adam J. Singer
- Renaissance School of Medicine at Stony Brook University, Department of Emergency Medicine, Stony Brook, New York, United States
| | - Mohammad Hassan Arbab
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| |
Collapse
|
15
|
Agour M, Falldorf C, Taleb F, Koch M, Bergmann RB, Castro-Camus E. Chocolate inspection by means of phase-contrast imaging using multiple-plane terahertz phase retrieval. OPTICS LETTERS 2022; 47:3283-3286. [PMID: 35776606 DOI: 10.1364/ol.464102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Terahertz (THz) radiation has shown enormous potential for non-destructive inspection in many contexts. Here, we present a method for imaging defects in chocolate bars that can be extended to many other materials. Our method requires only a continuous wave (CW) monochromatic source and detector at relatively low frequencies (280 GHz) corresponding to a relatively long wavelength of 1.1 mm. These components are used to construct a common-path configuration enabling the capturing of several images of THz radiation diffracted by the test object at different axial depths. The captured diffraction-rich images are used to constrain the associated phase retrieval problem enabling full access to the wave field, i.e., real amplitude and phase distributions. This allows full-field diffraction-limited phase-contrast imaging. Thus, we experimentally demonstrate the possibility of identifying contaminant particles with dimensions comparable to the wavelength.
Collapse
|