1
|
Fallois JD, Günzel A, Daniel C, Stumpf J, Busch M, Pein U, Paliege A, Amann K, Wiech T, Hantmann E, Wolf G, Pfeifer F, Girndt M, Lindner TH, Weimann A, Seehofer D, Bachmann A, Budde K, Biemann R, Isermann B, Engel C, Dittrich K, Hugo C, Halbritter J. Deceased donor urinary Dickkopf-3 associates with future allograft function following kidney transplantation. Am J Transplant 2024:S1600-6135(24)00571-9. [PMID: 39303796 DOI: 10.1016/j.ajt.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Predicting future kidney allograft function is challenging. Novel biomarkers, such as urinary Dickkopf-3 (uDKK3), may help guide donor selection and improve allograft outcomes. In this prospective multicenter pilot trial, we investigated whether donor uDKK3 reflects organ quality and is associated with future allograft function. We measured uDKK3/crea ratios (uDKK3/crea) from 95 deceased and 46 living kidney donors. Prenephrectomy uDKK3/crea levels were 100× higher in deceased than in living donors (9888 pg/mg vs 113 pg/mg; P < .001). Among deceased donor transplantations, recipients were stratified by their corresponding uDKK3/crea donor levels ranging below (group A, n = 68) or above (group B, n = 65) median. The primary end point of best estimated glomerular filtration rate (eGFR) within the first 3 months after kidney transplantation was superior in group A (56.3 mL/min/1.73 m2) than that in group B (44.2 mL/min/1.73 m2; P = .0139). Second, the composite clinical end point consisting of death, allograft failure or eGFR decline >50% occurred less frequent in group A. By mixed linear regression modeling, donor uDKK3/crea remained an independent predictor of eGFR after transplantation, with a slope of -4.282 mL/min/1.73 m2 per logarithmic increase in donor uDKK3/crea. In summary, uDKK3 may serve as a noninvasive, donor-dependent biomarker for assessing organ quality and future allograft function.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University Medical Center Leipzig, Leipzig, Germany.
| | - Anna Günzel
- Division of Nephrology, Department of Internal Medicine, University Medical Center Leipzig, Leipzig, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Julian Stumpf
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Martin Busch
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ulrich Pein
- Department of Internal Medicine II, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thorsten Wiech
- Nephropathology Section, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Hantmann
- Division of Nephrology, Department of Internal Medicine, University Medical Center Leipzig, Leipzig, Germany; Department of Nephrology and Medical Intensive Care, Charité Berlin, Berlin, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Felix Pfeifer
- German Organ Procurement Organization (DSO), Region East, Leipzig, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Tom H Lindner
- Division of Nephrology, Department of Internal Medicine, University Medical Center Leipzig, Leipzig, Germany
| | - Antje Weimann
- Division of Visceral Surgery and Transplantation Medicine, University Medical Center Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Division of Visceral Surgery and Transplantation Medicine, University Medical Center Leipzig, Leipzig, Germany
| | - Anette Bachmann
- Division of Nephrology, Department of Internal Medicine, University Medical Center Leipzig, Leipzig, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Berlin, Berlin, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Katalin Dittrich
- German Organ Procurement Organization (DSO), Region East, Leipzig, Germany; Division of Pediatric Nephrology and Transplantation, Department of Pediatrics, University Medical Center Leipzig, Leipzig, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University Medical Center Leipzig, Leipzig, Germany; Department of Nephrology and Medical Intensive Care, Charité Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Svenningsen P, Maslauskiene R, Palarasah Y, Bumblyte IA, Tepel M. Urinary Extracellular Vesicles for Non-Invasive Quantification of Principal Cell Damage in Kidney Transplant Recipients. Biomolecules 2024; 14:1124. [PMID: 39334890 PMCID: PMC11430813 DOI: 10.3390/biom14091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of the present study was to compare principal cell-specific aquaporin-2 (AQP2) abundances in urinary extracellular vesicles (uEVs) on the first postoperative day in deceased-donor kidney transplant recipients without and with acute kidney injury. We measured uEV markers (CD9 and CD63) and the abundances of proximal tubular sodium-glucose transporter 2, distal tubular sodium/chloride cotransporter, and principal cell-specific aquaporin-2 using Western blotting of urine. uEV-AQP2 levels were normalized to living donor controls. The validation cohort consisted of 82 deceased-donor kidney transplant recipients who had a median age of 50 years (IQR 43 to 57 years). A total of 32% of recipients had acute kidney injury. The median uEV-AQP2 was significantly higher in recipients with acute kidney injury compared to immediate allograft function (2.05; IQR 0.87 to 2.83; vs. 0.81; IQR 0.44 to 1.78; p < 0.01). The Youden index indicated a uEV-AQP2 threshold of 2.00. Stratifying uEV-AQP2 into quartiles showed that recipients with higher uEV-AQP2 levels had higher rates of acute kidney injury (Cochran-Armitage, p = 0.001). The discovery cohort showed elevated CD9, CD63, and uEV-AQP2 levels in urine from recipients with acute kidney injury compared to immediate allograft function. We were able to quantify the damage of principal cells after kidney transplant to predict acute kidney injury using uEV-AQP2.
Collapse
Affiliation(s)
- Per Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (P.S.)
| | - Rima Maslauskiene
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.M.); (I.A.B.)
| | - Yaseelan Palarasah
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (P.S.)
| | - Inga A. Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.M.); (I.A.B.)
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
3
|
Genovese F, Bager C, Frederiksen P, Vazquez D, Sand JMB, Jenkins RG, Maher TM, Stewart ID, Molyneaux PL, Fahy WA, Wain LV, Vestbo J, Nanthakumar C, Shaker SB, Hoyer N, Leeming DJ, George J, Trebicka J, Rasmussen DGK, Hansen MK, Cockwell P, Kremer D, Bakker SJ, Selby NM, Reese-Petersen AL, González A, Núñez J, Rossing P, Nissen NI, Boisen MK, Chen IM, Zhao L, Karsdal MA, Schuppan D. The fibroblast hormone Endotrophin is a biomarker of mortality in chronic diseases. Matrix Biol 2024; 132:1-9. [PMID: 38871093 DOI: 10.1016/j.matbio.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Fibrosis, driven by fibroblast activities, is an important contributor to morbidity and mortality in most chronic diseases. Endotrophin, a signaling molecule derived from processing of type VI collagen by highly activated fibroblasts, is involved in fibrotic tissue remodeling. Circulating levels of endotrophin have been associated with an increased risk of mortality in multiple chronic diseases. We conducted a systematic literature review collecting evidence from original papers published between 2012 and January 2023 that reported associations between circulating endotrophin (PROC6) and mortality. Cohorts with data available to the study authors were included in an Individual Patient Data (IPD) meta-analysis that evaluated the association of PROC6 with mortality (PROSPERO registration number: CRD42023340215) after adjustment for age, sex and BMI, where available. In the IPD meta-analysis including sixteen cohorts of patients with different non-communicable chronic diseases (NCCDs) (N = 15,205) the estimated summary hazard ratio for 3-years all-cause mortality was 2.10 (95 % CI 1.75-2.52) for a 2-fold increase in PROC6, with some heterogeneity observed between the studies (I2=70 %). This meta-analysis is the first study documenting that fibroblast activities, as quantified by circulating endotrophin, are independently associated with mortality across a broad range of NCCDs. This indicates that, irrespective of disease, interstitial tissue remodeling, and consequently fibroblast activities, has a central role in adverse clinical outcomes, and should be considered with urgency from drug developers as a target to treat.
Collapse
Affiliation(s)
| | | | | | | | | | - R Gisli Jenkins
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - Toby M Maher
- Keck Medicine of University of Southern California, 1510 San Pablo Street, Los Angeles, CA 90033, USA
| | - Iain D Stewart
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - Philip L Molyneaux
- Imperial College London 4615, National Heart & Lung Institute, London, UK
| | - William A Fahy
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Louise V Wain
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK; Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, England
| | - Carmel Nanthakumar
- Clinical Sciences (Respiratory), GSK Research & Development, GSKH, Brentford, UK
| | - Saher Burhan Shaker
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| | - Nils Hoyer
- Department of Respiratory Medicine, Gentofte University Hospital, Hellerup, Hovedstaden, Denmark
| | | | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Jonel Trebicka
- Medizinische Klinik B, Universitätsklinikum Münster, Münster University, Münster, Germany
| | | | | | - Paul Cockwell
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daan Kremer
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen 9713 GZ, Groningen, The Netherlands
| | - Stephan Jl Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen 9713 GZ, Groningen, The Netherlands
| | - Nicholas M Selby
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | | | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA 31008, Pamplona, Spain; Centro de investigacion biomedica en red enfermedades cardiovasculares, Madrid, Spain
| | - Julio Núñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Mogens Karsbøl Boisen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inna M Chen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lei Zhao
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey, USA
| | | | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| |
Collapse
|
4
|
López-Abad A, Piana A, Prudhomme T, Bañuelos Marco B, Dönmez MI, Pecoraro A, Boissier R, Campi R, Breda A, Territo A. Biomarkers in kidney transplantation: Where do we stand? Actas Urol Esp 2024; 48:407-409. [PMID: 38185319 DOI: 10.1016/j.acuroe.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024]
Affiliation(s)
- A López-Abad
- Servicio de Urología, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - A Piana
- Servicio de Urología, Hospital San Luigi, Universidad de Turín, Turín, Italy
| | - T Prudhomme
- Servicio de Urología, Trasplante Renal y Andrología, Hospital Universitario de Rangueil, Toulouse, France
| | - B Bañuelos Marco
- Servicio de Urología, Sección de Trasplante Renal y Urología Reconstructiva, Hospital Universitario Clínico San Carlos, Madrid, France
| | - M I Dönmez
- Departamento de Urología, Facultad de Medicina, Universidad de Estambul, Estambul, Turkey
| | - A Pecoraro
- Unidad de Cirugía Robótica Urológica y Trasplante Renal, Universidad de Florencia, Hospital de Careggi, Florencia, Italy
| | - R Boissier
- Servicio de Urología y Trasplante Renal, Hospital Universitario de La Conception, Marsella, France
| | - R Campi
- Unidad de Cirugía Robótica Urológica y Trasplante Renal, Universidad de Florencia, Hospital de Careggi, Florencia, Italy
| | - A Breda
- Servicio de Urología, Fundació Puigvert, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - A Territo
- Servicio de Urología, Fundació Puigvert, Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Pipic D, Rasmussen M, Saleh QW, Tepel M. Induction Therapies Determine the Distribution of Perforin and Granzyme B Transcripts in Kidney Transplant Recipients. Biomedicines 2024; 12:1258. [PMID: 38927465 PMCID: PMC11200803 DOI: 10.3390/biomedicines12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Peripheral blood mononuclear cells contain secretory granules with Perforin and Granzyme B for defense against pathogens. The objective of the present study was to compare the effects of immunosuppressive induction therapies on Perforin and Granzyme B transcripts in kidney transplant recipients. Transcripts were determined in 408 incident kidney transplant recipients eight days posttransplant using quantitative real-time PCR. Compared to 90 healthy subjects, the median Perforin transcripts were lower in kidney transplant recipients with blood-group ABO-incompatible donors (N = 52), compatible living donors (N = 130), and deceased donors (N = 226) (25.7%; IQR, 6.5% to 46.0%; 31.5%; IQR, 10.9% to 57.7%; and 35.6%; IQR, 20.6% to 60.2%; respectively; p = 0.015 by the Kruskal-Wallis test). Kidney transplant recipients who were treated with thymoglobulin (N = 64) had significantly lower Perforin as well as Granzyme B compared to all other induction therapies (N = 344) (each p < 0.001). Receiver operator characteristics analysis showed that both Perforin (area under curve, 0.919) and Granzyme B (area under curve, 0.915) indicated thyroglobulin-containing induction therapies. Regression analysis showed that both reduction in plasma creatinine and human leukocyte antigen mismatches were positively associated with elevated Perforin/Granzyme B transcript ratio posttransplant. We conclude clinical parameters and therapies affect Perforin and Granzyme B transcripts posttransplant.
Collapse
Affiliation(s)
- Dino Pipic
- Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Marianne Rasmussen
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Qais W. Saleh
- Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| | - Martin Tepel
- Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, 5000 Odense, Denmark
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
6
|
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev 2024; 45:361-378. [PMID: 38091968 PMCID: PMC11492497 DOI: 10.1210/endrev/bnad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.
Collapse
Affiliation(s)
- Kim Henriksen
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Federica Genovese
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | | | | | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morten A Karsdal
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Cao Y, Hu B, Fan Y, Wang W, Chi M, Nasser MI, Ma K, Liu C. The effects of apoptosis inhibitor of macrophage in kidney diseases. Eur J Med Res 2024; 29:21. [PMID: 38178221 PMCID: PMC10765713 DOI: 10.1186/s40001-023-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Kidney disease is a progressive and irreversible condition in which immunity is a contributing factor that endangers human health. It is widely acknowledged that macrophages play a significant role in developing and causing numerous kidney diseases. The increasing focus on the mechanism by which macrophages express apoptosis inhibitor of macrophages (AIM) in renal diseases has been observed. AIM is an apoptosis inhibitor that stops different things that cause apoptosis from working. This keeps AIM-bound cell types alive. Notably, the maintenance of immune cell viability regulates immunity. As our investigation progressed, we concluded that AIM has two sides when it comes to renal diseases. AIM can modulate renal phagocytosis, expedite the elimination of renal tubular cell fragments, and mitigate tissue injury. AIM can additionally exacerbate the development of renal fibrosis and kidney disease by prolonging inflammation. IgA nephropathy (IgAN) may also worsen faster if more protein is in the urine. This is because IgA and immunoglobulin M are found together and expressed. In the review, we provide a comprehensive overview of prior research and concentrate on the impacts of AIM on diverse subcategories of nephropathies. We discovered that AIM is closely associated with renal diseases by playing a positive or negative role in the onset, progression, or cure of kidney disease. AIM is thus a potentially effective therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yixia Cao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yunhe Fan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
- Renal Department and Nephrology Institute, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China.
| |
Collapse
|
8
|
Sparding N, Genovese F, Rasmussen DGK, Karsdal MA, Krogstrup NV, Nielsen MB, Hornum M, Nagarajah S, Birn H, Jespersen B, Tepel M, Nørregaard R. Endotrophin Levels Are Associated with Allograft Outcomes in Kidney Transplant Recipients. Biomolecules 2023; 13:biom13050792. [PMID: 37238662 DOI: 10.3390/biom13050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Early prediction of kidney graft function may assist clinical management, and for this, reliable non-invasive biomarkers are needed. We evaluated endotrophin (ETP), a novel non-invasive biomarker of collagen type VI formation, as a prognostic marker in kidney transplant recipients. ETP levels were measured with the PRO-C6 ELISA in the plasma (P-ETP) of 218 and urine (U-ETP/Cr) of 172 kidney transplant recipients, one (D1) and five (D5) days, as well as three (M3) and twelve (M12) months, after transplantation. P-ETP and U-ETP/Cr at D1 (P-ETP AUC = 0.86, p < 0.0001; U-ETP/Cr AUC = 0.70, p = 0.0002) were independent markers of delayed graft function (DGF) and P-ETP at D1 had an odds ratio of 6.3 (p < 0.0001) for DGF when adjusted for plasma creatinine. The results for P-ETP at D1 were confirmed in a validation cohort of 146 transplant recipients (AUC = 0.92, p < 0.0001). U-ETP/Cr at M3 was negatively associated with kidney graft function at M12 (p = 0.007). This study suggests that ETP at D1 can identify patients at risk of delayed graft function and that U-ETP/Cr at M3 can predict the future status of the allograft. Thus, measuring collagen type VI formation could aid in predicting graft function in kidney transplant recipients.
Collapse
Affiliation(s)
- Nadja Sparding
- Nordic Bioscience, 2730 Herlev, Denmark
- Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | - Marie Bodilsen Nielsen
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Subagini Nagarajah
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
9
|
Kremer D, Alkaff FF, Post A, Knobbe TJ, Tepel M, Thaunat O, Berger SP, van den Born J, Genovese F, Karsdal MA, Rasmussen DGK, Bakker SJL. Plasma endotrophin, reflecting tissue fibrosis, is associated with graft failure and mortality in KTRs: results from two prospective cohort studies. Nephrol Dial Transplant 2023; 38:1041-1052. [PMID: 36535643 PMCID: PMC10064980 DOI: 10.1093/ndt/gfac332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fibrosis is a suggested cause of graft failure and mortality among kidney transplant recipients (KTRs). Accumulating evidence suggests that collagen type VI is tightly linked to fibrosis and may be a marker of systemic fibrosis and ageing. We studied whether plasma endotrophin, a pro-collagen type VI fragment, is associated with graft failure and mortality among KTRs. METHODS In cohort A (57% male, age 53 ± 13 years), we measured plasma endotrophin in 690 prevalent KTRs ≥1 year after transplantation. The non-overlapping cohort B included 500 incident KTRs with serial endotrophin measurements before and after kidney transplantation to assess trajectories and intra-individual variation of endotrophin. RESULTS In cohort A, endotrophin was higher in KTRs compared with healthy controls. Concentrations were positively associated with female sex, diabetes, cardiovascular disease, markers of inflammation and kidney injury. Importantly, endotrophin was associated with graft failure {hazard ratio [HR] per doubling 1.87 [95% confidence interval (CI) 1.07-3.28]} and mortality [HR per doubling 2.59 (95% CI 1.73-3.87)] independent of potential confounders. Data from cohort B showed that endotrophin concentrations strongly decrease after transplantation and remain stable during post-transplantation follow-up [intra-individual coefficient of variation 5.0% (95% CI 3.7-7.6)]. CONCLUSIONS Plasma endotrophin is strongly associated with graft failure and mortality among KTRs. These findings suggest a key role of abnormal extracellular matrix turnover and fibrosis in graft and patient prognosis among KTRs and highlight the need for (interventional) studies targeting the profibrotic state of KTRs. The intra-individual stability after transplantation indicates potential use of endotrophin as a biomarker and outcome measure of fibrosis. TRIAL REGISTRATION ClinicalTrials.gov NCT02811835.
Collapse
Affiliation(s)
- Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Firas F Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tim J Knobbe
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Tepel
- Odense University Hospital, Department of Nephrology, Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Satrapova V, Sparding N, Genovese F, Karsdal MA, Bartonova L, Frausova D, Honsova E, Kollar M, Suchanek M, Koprivova H, Rysava R, Bednarova V, Tesar V, Hruskova Z. Biomarkers of fibrosis, kidney tissue injury and inflammation may predict severity and outcome of renal ANCA – associated vasculitis. Front Immunol 2023; 14:1122972. [PMID: 37020541 PMCID: PMC10067901 DOI: 10.3389/fimmu.2023.1122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
BackgroundActivity and chronicity of kidney involvement in ANCA-associated vasculitis (AAV) can be currently reliably evaluated only by kidney biopsy. In this study, we measured a panel of serum and urinary biomarkers collected at the time of kidney biopsy and hypothesized that they could reflect specific histopathological parameters in the biopsy and help to predict prognosis.MethodsWe examined a cohort of 45 patients with AAV and 10 healthy controls. Biomarker levels (DKK-3, CD163, EGF, PRO-C6 and C3M) were measured in this study by ELISA. Biopsies were scored with a scoring system for AAV (focal x crescentic x sclerotic x mixed class) and interstitial fibrosis was quantified.ResultsLevels of urinary DKK-3, CD163, EGF, PRO-C6 and C3M significantly differed among biopsy classes in AAV, with urinary DKK-3 and PRO-C6 levels being highest in the sclerotic class and lowest in the focal class, urinary CD163 levels highest in the crescentic class and urinary C3M levels highest in the focal class. Moreover, the urinary biomarkers were able to discriminate focal biopsy class from the other classes. Urinary DKK-3, EGF, PRO-C6 and C3M levels measured at the time of biopsy were also significantly related to the extent of fibrosis and to the final kidney function at the end of follow-up.ConclusionsThis small pilot study suggests that selected urinary biomarkers of fibrosis and inflammation may reflect changes in the kidney biopsy and be prognostic of kidney outcome in patients with AAV.
Collapse
Affiliation(s)
- Veronika Satrapova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
- *Correspondence: Veronika Satrapova,
| | | | | | | | - Lenka Bartonova
- Department of Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Doubravka Frausova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Eva Honsova
- Department of Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Marek Kollar
- Department of Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Miloslav Suchanek
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia
| | - Helena Koprivova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Romana Rysava
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vladimira Bednarova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Zdenka Hruskova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
11
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
12
|
Tepel M, Nagarajah S, Saleh Q, Thaunat O, Bakker SJL, van den Born J, Karsdal MA, Genovese F, Rasmussen DGK. Pretransplant characteristics of kidney transplant recipients that predict posttransplant outcome. Front Immunol 2022; 13:945288. [PMID: 35958571 PMCID: PMC9357871 DOI: 10.3389/fimmu.2022.945288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Better characterization of the potential kidney transplant recipient using novel biomarkers, for example, pretransplant plasma endotrophin, will lead to improved outcome after transplantation. This mini-review will focus on current knowledge about pretransplant recipients’ characteristics, biomarkers, and immunology. Clinical characteristics of recipients including age, obesity, blood pressure, comorbidities, and estimated survival scores have been introduced for prediction of recipient and allograft survival. The pretransplant immunologic risk assessment include histocompatibility leukocyte antigens (HLAs), anti-HLA donor-specific antibodies, HLA-DQ mismatch, and non-HLA antibodies. Recently, there has been the hope that pretransplant determination of markers can further improve the prediction of posttransplant complications, both short-term and long-term outcomes including rejections, allograft loss, and mortality. Higher pretransplant plasma endotrophin levels were independently associated with posttransplant acute allograft injury in three prospective European cohorts. Elevated numbers of non-synonymous single-nucleotide polymorphism mismatch have been associated with increased allograft loss in a multivariable analysis. It is concluded that there is a need for integration of clinical characteristics and novel molecular and immunological markers to improve future transplant medicine to reach better diagnostic decisions tailored to the individual patient.
Collapse
Affiliation(s)
- Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
- *Correspondence: Martin Tepel,
| | - Subagini Nagarajah
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Qais Saleh
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Cardiovascular and Renal Research, Institute of Molecular Medicine, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Olivier Thaunat
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique, Lyon, France
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | |
Collapse
|