1
|
Rupp T, Oelschlägel B, Berjano R, Mahfoud H, Buono D, Wenke T, Rabitsch K, Bächli G, Stanojlovic V, Cabrele C, Xiong W, Knaden M, Dahl A, Neinhuis C, Wanke S, Dötterl S. Chemical imitation of yeast fermentation by the drosophilid-pollinated deceptive trap-flower Aristolochia baetica (Aristolochiaceae). PHYTOCHEMISTRY 2024; 224:114142. [PMID: 38762152 DOI: 10.1016/j.phytochem.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Deceptive flowers, unlike in mutualistic pollination systems, mislead their pollinators by advertising rewards which ultimately are not provided. Although our understanding of deceptive pollination systems increased in recent years, the attractive signals and deceptive strategies in the majority of species remain unknown. This is also true for the genus Aristolochia, famous for its deceptive and fly-pollinated trap flowers. Representatives of this genus were generally assumed to be oviposition-site mimics, imitating vertebrate carrion or mushrooms. However, recent studies found a broader spectrum of strategies, including kleptomyiophily and imitation of invertebrate carrion. A different deceptive strategy is presented here for the western Mediterranean Aristolochia baetica L. We found that this species is mostly pollinated by drosophilid flies (Drosophilidae, mostly Drosophila spp.), which typically feed on fermenting fruit infested by yeasts. The flowers of A. baetica emitted mostly typical yeast volatiles, predominantly the aliphatic compounds acetoin and 2,3-butandiol, and derived acetates, as well as the aromatic compound 2-phenylethanol. Analyses of the absolute configurations of the chiral volatiles revealed weakly (acetoin, 2,3-butanediol) to strongly (mono- and diacetates) biased stereoisomer-ratios. Electrophysiological (GC-EAD) experiments and lab bioassays demonstrated that most of the floral volatiles, although not all stereoisomers of chiral compounds, were physiologically active and attractive in drosophilid pollinators; a synthetic mixture thereof successfully attracted them in field and lab bioassays. We conclude that A. baetica chemically mimics yeast fermentation to deceive its pollinators. This deceptive strategy (scent chemistry, pollinators, trapping function) is also known from more distantly related plants, such as Arum palaestinum Boiss. (Araceae) and Ceropegia spp. (Apocynaceae), suggesting convergent evolution. In contrast to other studies working on floral scents in plants imitating breeding sites, the present study considered the absolute configuration of chiral compounds.
Collapse
Affiliation(s)
- Thomas Rupp
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Birgit Oelschlägel
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Regina Berjano
- Department of Vegetal Biology and Ecology, University of Sevilla, Avenida Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Hafez Mahfoud
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Daniele Buono
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Torsten Wenke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Katharina Rabitsch
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Gerhard Bächli
- Institut für Evolutionsbiologie und Umweltforschung, Universität Zürich-Irchel, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Vesna Stanojlovic
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Wujian Xiong
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria; Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxingxi Road 166, 621000, Mianyang, China
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Neinhuis
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany; Departamento de Botánica, Instituto de Biología, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-367, 04510, Coyoacan, Distrito Federal, Mexico; Institut für Ökologie, Evolution und Diversiät, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany; Abteilung Botanik und molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Stefan Dötterl
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
2
|
Gfrerer E, Laina D, Gibernau M, Comes HP, Hörger AC, Dötterl S. Variation in scent amount but not in composition correlates with pollinator visits within populations of deceptive Arum maculatum L. (Araceae). FRONTIERS IN PLANT SCIENCE 2023; 13:1046532. [PMID: 36699827 PMCID: PMC9869488 DOI: 10.3389/fpls.2022.1046532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Floral scent is vital for pollinator attraction and varies among and within plant species. However, little is known about how inter-individual variation in floral scent affects the abundance and composition of floral visitor assemblages within populations. Moreover, for deceptive plants it is predicted that intra-population variation in scent can be maintained by negative frequency-dependent selection, but empirical evidence is still lacking. To investigate the ecological and evolutionary relations between inter-individual scent variation (i.e., total emission and composition) and floral visitors in deceptive plants, we studied floral scent, visitor assemblages, and fruit set in two populations of fly-pollinated (Psychodidae, Sphaeroceridae; Diptera) and deceptive Arum maculatum from Austria (JOS) and northern Italy (DAO). By correlating individual data on floral scent and visitor assemblages, we show that inter-individual variation in floral scent partly explains variation in visitor assemblages. The quantity of floral scent emitted per individual correlated positively with visitor abundance in both populations but explained visitor composition only in DAO, where strongly scented inflorescences attracted more sphaerocerid flies. However, in each population, the composition of floral scent did not correlate with the composition of floral visitors. There was also no evidence of negative frequency-dependent selection on floral scent. Instead, in JOS, more frequent scent phenotypes attracted more pollinators and were more likely to set an infructescence than rarer ones. Our results show that floral scent, despite being key in pollinator attraction in A. maculatum, only partly explains variation in pollinator abundance and composition. Overall, this study is the first to shed light on the importance of inter-individual variation in floral scent in explaining floral visitor assemblages at the population level in a deceptive plant species.
Collapse
Affiliation(s)
- Eva Gfrerer
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Danae Laina
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Marc Gibernau
- Laboratory of Sciences for the Environment, Centre National de la Recherche Scientifique (CNRS) – University of Corsica, Ajaccio, France
| | - Hans Peter Comes
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Anja C. Hörger
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Szenteczki MA, Godschalx AL, Gauthier J, Gibernau M, Rasmann S, Alvarez N. Transcriptomic analysis of deceptively pollinated Arum maculatum (Araceae) reveals association between terpene synthase expression in floral trap chamber and species-specific pollinator attraction. G3 (BETHESDA, MD.) 2022; 12:jkac175. [PMID: 35861391 PMCID: PMC9434142 DOI: 10.1093/g3journal/jkac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Deceptive pollination often involves volatile organic compound emissions that mislead insects into performing nonrewarding pollination. Among deceptively pollinated plants, Arum maculatum is particularly well-known for its potent dung-like volatile organic compound emissions and specialized floral chamber, which traps pollinators-mainly Psychoda phalaenoides and Psychoda grisescens-overnight. However, little is known about the genes underlying the production of many Arum maculatum volatile organic compounds, and their influence on variation in pollinator attraction rates. Therefore, we performed de novo transcriptome sequencing of Arum maculatum appendix and male floret tissue collected during anthesis and postanthesis, from 10 natural populations across Europe. These RNA-seq data were paired with gas chromatography-mass spectrometry analyses of floral scent composition and pollinator data collected from the same inflorescences. Differential expression analyses revealed candidate transcripts in appendix tissue linked to malodourous volatile organic compounds including indole, p-cresol, and 2-heptanone. In addition, we found that terpene synthase expression in male floret tissue during anthesis significantly covaried with sex- and species-specific attraction of Psychoda phalaenoides and Psychoda grisescens. Taken together, our results provide the first insights into molecular mechanisms underlying pollinator attraction patterns in Arum maculatum and highlight floral chamber sesquiterpene (e.g. bicyclogermacrene) synthases as interesting candidate genes for further study.
Collapse
Affiliation(s)
- Mark A Szenteczki
- Corresponding author: Université de Neuchâtel, Institut de Biologie, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland. E-mail
| | | | | | | | | | | |
Collapse
|