1
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Calanni-Pileri M, Michaelis M, Langhammer M, Tognetti PR, Weitzel JM. The Imitation of the Ovarian Fatty Acid Profile of Superfertile Dummerstorf Mouse Lines during IVM of Control Line Oocytes Could Influence Their Maturation Rates. Biomedicines 2023; 11:biomedicines11051439. [PMID: 37239110 DOI: 10.3390/biomedicines11051439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Declining human fertility worldwide is an attractive research target for the search for "high fertility" genes and pathways to counteract this problem. To study these genes and pathways for high fertility, the superfertile Dummerstorf mouse lines FL1 and FL2 are two unique model organisms representing an improved fertility phenotype. A direct reason for this remarkable characteristic of increased litter size, which reaches >20 pups/litter in both FLs, is the raised ovulation rate by approximately 100%, representing an impressive record in this field. Dummerstorf high-fertility lines incarnate extraordinary and singular models of high-fertility for other species, mostly farm animals, with the aim of improving production and reducing costs. Our main goal is to describe the genetic and molecular pathways to reach their phenotypical excellence, and to reproduce them using the control population. The large litter size and ovulation rate in Dummerstorf lines are mostly due to an increase in the quality of their oocytes, which receive a different intake of fat and are composed of different types and concentrations of fatty acids. As the follicular microenvironment plays a fundamental role during the oocytes development, in the present manuscript, we tried to improve the in vitro maturation technique by mimicking the fatty acid profile of FLs oocytes during the IVM of control oocytes. Currently, the optimization of the IVM system is fundamental mostly for prepubertal girls and oncological patients whose main source of gametes to restore fertility may be their maturation in vitro. Our data suggest that the specific fatty acid composition of FLs COCs can contribute to their high-fertility phenotype. Indeed, COCs from the control line matured in IVM-medium supplemented with C14:0 (high in FL2 COCs) or with C20:0, C21:0, C22:0, and C23:0 (high in FL1 COCs), but also control oocytes without cumulus, whose concentration in long-chain FAs are "naturally" higher, showing a slightly higher maturation rate. These findings represent an important starting point for the optimization of the IVM system using FA supplementation.
Collapse
Affiliation(s)
- Michela Calanni-Pileri
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Martina Langhammer
- Service Group Lab Animal Facility, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Paolo Rosellini Tognetti
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Service Group Lab Animal Facility, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
3
|
Sadeghi M, Andani MR, Hajian M, Sanei N, Moradi-Hajidavaloo R, Mahvash N, Jafarpour F, Nasr-Esfahani MH. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS One 2023; 18:e0281331. [PMID: 37075045 PMCID: PMC10115261 DOI: 10.1371/journal.pone.0281331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023] Open
Abstract
The specific role of the canonical WNT/β-catenin signaling pathway during the preimplantation development of goat remains unclear. Our objective was to investigate the expression of β-CATENIN, one of the critical components of Wnt signaling pathway, in IVF embryos and compare it with SCNT embryos in goat. In addition, we evaluated the consequence of inhibition of β-catenin using IWR1. Initially, we observed cytoplasmic expression of β-CATENIN in 2 and 8-16 cell stage embryos and membranous expression of β-CATENIN in compact morula and blastocyst stages. Furthermore, while we observed exclusively membranous localization of β-catenin in IVF blastocysts, we observed both membranous and cytoplasmic localization in SCNT blastocysts. We observed that Inhibition of WNT signaling by IWR1 during compact morula to blastocyst transition (from day 4 till day 7 of in vitro culture) increased blastocyst formation rate in both IVF and SCNT embryos. In conclusion, it seems that WNT signaling system has functional role in the preimplantation goat embryos, and inhibition of this pathway during the period of compact morula to blastocyst transition (D4-D7) can improve preimplantation embryonic development.
Collapse
Affiliation(s)
- Marjan Sadeghi
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafiseh Sanei
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nasrin Mahvash
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
4
|
Leclercq A, Ranefall P, Sjunnesson YCB, Hallberg I. Occurrence of late-apoptotic symptoms in porcine preimplantation embryos upon exposure of oocytes to perfluoroalkyl substances (PFASs) under in vitro meiotic maturation. PLoS One 2022; 17:e0279551. [PMID: 36576940 PMCID: PMC9797085 DOI: 10.1371/journal.pone.0279551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
The objectives of this study were to evaluate the effect of perfluoroalkyl substances on early embryonic development and apoptosis in blastocysts using a porcine in vitro model. Porcine oocytes (N = 855) collected from abattoir ovaries were subjected to perfluorooctane sulfonic acid (PFOS) (0.1 μg/ml) and perfluorohexane sulfonic acid (PFHxS) (40 μg/ml) during in vitro maturation (IVM) for 45 h. The gametes were then fertilized and cultured in vitro, and developmental parameters were recorded. After 6 days of culture, resulting blastocysts (N = 146) were stained using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and imaged as stacks using confocal laser scanning microscopy. Proportion of apoptotic cells as well as total numbers of nuclei in each blastocyst were analyzed using objective image analysis. The experiment was run in 9 replicates, always with a control present. Effects on developmental parameters were analyzed using logistic regression, and effects on apoptosis and total numbers of nuclei were analyzed using linear regression. Higher cell count was associated with lower proportion of apoptotic cells, i.e., larger blastocysts contained less apoptotic cells. Upon PFAS exposure during IVM, PFHxS tended to result in higher blastocyst rates on day 5 post fertilization (p = 0.07) and on day 6 post fertilization (p = 0.05) as well as in higher apoptosis rates in blastocysts (p = 0.06). PFHxS resulted in higher total cell counts in blastocysts (p = 0.002). No effects attributable to the concentration of PFOS used here was seen. These findings add to the evidence that some perfluoroalkyl substances may affect female reproduction. More studies are needed to better understand potential implications for continued development as well as for human health.
Collapse
Affiliation(s)
- Anna Leclercq
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Petter Ranefall
- Department of Information Technology, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Ylva Cecilia Björnsdotter Sjunnesson
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Hallberg
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Dai S, Zhang H, Yang F, Shang W, Zeng S. Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice. BIOLOGY 2022; 11:biology11060833. [PMID: 35741354 PMCID: PMC9219699 DOI: 10.3390/biology11060833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) plays a crucial role during folliculogenesis, which has been demonstrated by previous research. However, the optimal IGF-1 dosage in the three-dimensional (3D) culture system is unknown. Mouse secondary follicles (140−150 µm) were cultured for 6 days within an alginate bead in a medium supplemented with 0 (G0), 5 ng/mL (G5), 10 ng/mL (G10), or 50 ng/mL IGF-1 (G50). Secretions of 17β-estradiol and progesterone were significantly increased in G10 and G50 (p < 0.05). However, G50 significantly inhibited follicular growth (p < 0.05), while G10 showed a higher oocyte maturation rate. Thus, the 10 ng/mL IGF-1 was used in subsequent experiments. IGF-1 enhanced the function of granulosa cells (GCs) by upregulating expressions of Star, Cyp19a1, Hsd3b1, Fshr, and Lhcgr. Oocyte secretory function was promoted by upregulating expressions of Bmp-15, Gdf-9, and Fgf-8. Addition of IGF-1 showed anti-apoptotic effect. However, G10 did not improve fertilization rate of MII oocytes compared to G0. In an intraperitoneal injection experiment in mice, IGF-1 significantly increased the number of ovulated oocytes (p < 0.05). In conclusion, 10 ng/mL IGF-1 can promote the production of mature oocytes in the 3D culture medium and injection of IGF-1 before superovulation increases the number of ovulated oocytes.
Collapse
Affiliation(s)
- Shizhen Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
| | - Hanxue Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
| | - Feng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
| | - Wei Shang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Center for Reproductive Medicine, The Sixth Medical Center, Beijing 100037, China
- Correspondence: (W.S.); (S.Z.)
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (H.Z.); (F.Y.)
- Correspondence: (W.S.); (S.Z.)
| |
Collapse
|
6
|
Liu Q, Zhao S, Zhou J, Liu P, Huo B. Effects of microvibration stimulation on developmental potential of discarded germinal vesicle oocytes of human. Front Endocrinol (Lausanne) 2022; 13:1028557. [PMID: 36325459 PMCID: PMC9618666 DOI: 10.3389/fendo.2022.1028557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE This research aims to study the effects of continuous microvibration stimulation on the parthenogenetic development of human germinal vesicle oocytes. METHODS Ninety-five discarded germinal vesicle oocytes from intracytoplasmic sperm injection treatment (ICSI) cycles performed at Amcare Women's & Children's Hospital between January and December 2021 were used for conventional static culture as well as 10 Hz microvibration culture. We investigated the differences between the two groups in terms of oocyte maturation rate, parthenogenetic activation rate, and parthenogenetic blastocyst formation rate. RESULTS The static culture and 10 Hz microvibration culture of 95 oocytes showed that the parthenogenetic blastocyst formation rate in the microvibration culture group was significantly higher than those in the traditional static culture group. CONCLUSION A continuous microvibration stimulation can significantly improve the parthenogenetic developmental potential of human immature oocytes.
Collapse
Affiliation(s)
- Qinli Liu
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
- *Correspondence: Qinli Liu, ; Bo Huo,
| | - Sen Zhao
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Jian Zhou
- Reproductive Medical Center, Amcare Women’s & Children’s Hospital, Tianjin, China
| | - Ping Liu
- Reproductive Medical Centre, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Bo Huo
- Sports Artificial Intelligence Institute, Capital University of Physical Education and Sports, Beijing, China
- *Correspondence: Qinli Liu, ; Bo Huo,
| |
Collapse
|