1
|
Foudah AI, Alam A. Enhanced targeting efficacy of baicalein analogues on the dimeric state of SARS-CoV-2 3CL protease compared to monomeric state. J Biomol Struct Dyn 2024:1-14. [PMID: 39688934 DOI: 10.1080/07391102.2024.2437522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 12/19/2024]
Abstract
The COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2, has been a global threat affecting the entire world. It is a single-stranded RNA virus that belongs to the coronavirus family. In SARS-CoV2, the 3CL protease protein significantly contributes to viral replication and is responsible for viral polyprotein cleavage. These factors make 3CL protease a promising drug target to inhibit the growth of SARS-CoV-2. In this study, using in silico approaches, we have targeted the 3CL protease of SARS-CoV-2 to identify promising antiviral candidates for COVID-19 treatment. Here, 463 structural analogs of Baicalein compounds were collected initially, and by employing the quantitative structure-activity relationship (QSAR) technique on 76 antiviral compounds, screening was done against monomeric and dimeric versions of the target protein. Further, based on the molecular interaction studies and MD simulation, followed by validation of the obtained simulation trajectories using PCA and MM/PBSA calculation, it was observed that ligands showed better binding stability with dimeric proteins than monomeric proteins and can be used as suitable therapeutic candidates for SARS-CoV2 treatment. The MD simulation showed a favorable, robust outcome for the 46885476 when bound to the dimeric state. It matched the control in the number of hydrogen bonds and conformational stability. This molecule also directly impacted the catalytic dyads of the protein, suggesting potential inhibitory action. In addition, this study helps to accelerate the drug development process against SARS-CoV2 through the observed in-silico results, which need to be validated using clinical experiments in future studies.
Collapse
Affiliation(s)
- Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
2
|
Kowalczyk A. Hesperidin, a Potential Antiviral Agent against SARS-CoV-2: The Influence of Citrus Consumption on COVID-19 Incidence and Severity in China. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:892. [PMID: 38929512 PMCID: PMC11206107 DOI: 10.3390/medicina60060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
This review examines hesperidin, a citrus bioflavonoid, as a potential antiviral agent against SARS-CoV-2. The COVID-19 pandemic has demanded an urgent need to search for effective antiviral compounds, including those of natural origin, such as hesperidin. The review provides a comprehensive analysis of the chemical properties, bioavailability and antiviral mechanisms of hesperidin, particularly its potential efficacy against SARS-CoV-2. A review of databases, including PubMedPico, Scopus and Web of Science, was conducted using specific keywords and search criteria in accordance with PRISMA (Re-porting Items for Systematic Reviews and Meta-Analysis) guidelines between 2020 and 2024. Of the 207 articles, 37 were selected for the review. A key aspect is the correlation of in vitro, in silico and clinical studies on the antiviral effects of hesperidin with epidemiological data on citrus consumption in China during 2020-2024. The importance of integrating laboratory findings with actual consumption patterns to better understand the role of hesperidin in mitigating COVID-19 was highlighted, and an attempt was made to analyze epidemiological studies to examine the association between citrus juice consumption as a source of hesperidin and the incidence and severity of COVID-19 using China as an example. The review identifies consistencies and discrepancies between experimental and epidemiological data, highlighting the need to correlate the two fields to better understand the potential of hesperidin as an agent against SARS-CoV-2. Challenges and limitations in interpreting the results and future research perspectives in this area are discussed. The aim of this comprehensive review is to bridge the gap between experimental studies and epidemiological evidence and to contribute to the understanding of their correlation.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wrocław, Poland
| |
Collapse
|
3
|
Ullah A, Ullah S, Waqas M, Khan M, Rehman NU, Khalid A, Jan A, Aziz S, Naeem M, Halim SA, Khan A, Al-Harrasi A. Novel Natural Inhibitors for Glioblastoma by Targeting Epidermal Growth Factor Receptor and Phosphoinositide 3-kinase. Curr Med Chem 2024; 31:6596-6613. [PMID: 38616761 DOI: 10.2174/0109298673293279240404080046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND/AIM Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations. METHODS Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively. RESULTS Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, and QTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 μM, 28.27 ± 1.52 μM, and 22.93 ± 1.63 μM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 μM). CONCLUSION This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.
Collapse
Affiliation(s)
- Atta Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| |
Collapse
|
4
|
Queirós-Reis L, Mesquita JR, Brancale A, Bassetto M. Exploring the Fatty Acid Binding Pocket in the SARS-CoV-2 Spike Protein - Confirmed and Potential Ligands. J Chem Inf Model 2023; 63:7282-7298. [PMID: 37991468 DOI: 10.1021/acs.jcim.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Severe Acute Respiratory syndrome 2 (SARS-CoV-2) is a respiratory virus responsible for coronavirus disease 19 (COVID-19) and the still ongoing and unprecedented global pandemic. The key viral protein for cell infection is the spike glycoprotein, a surface-exposed fusion protein that both recognizes and mediates entry into host cells. Within the spike glycoprotein, a fatty acid binding pocket (FABP) was confirmed, with the crystallization of linoleic acid (LA) occupying a well-defined site. Importantly, when the pocket is occupied by a fatty acid, an inactive conformation is stabilized, and cell recognition is hindered. In this review, we discuss ligands reported so far for this site, correlating their activity predicted through in silico studies with antispike experimental activity, assessed by either binding assays or cell-infection assays. LA was the first confirmed ligand, cocrystallized in a cryo-EM structure of the spike protein, resulting in increased stability of the inactive conformation of the spike protein. The next identified ligand, lifitegrast, was also experimentally confirmed as a ligand with antiviral activity, suggesting the potential for diverse chemical scaffolds to bind this site. Finally, SPC-14 was also confirmed as a ligand, although no inhibition assays were performed. In this review, we identified 20 studies describing small-molecule compounds predicted to bind the pocket in in silico studies and with confirmed binding or in vitro activity, either inhibitory activity against the spike-ACE2 interaction or antiviral activity in cell-based assays. When considering all ligands confirmed with in vitro assays, a good overall occupation of the pocket should be complemented with the ability to make direct interactions, both hydrophilic and hydrophobic, with key amino acid residues defining the pocket surface. Among the active compounds, long flexible carbon chains are recurrent, with retinoids capable of binding the FABP, although bulkier systems are also capable of affecting viral fitness. Compounds able to bind this site with high affinity have the potential to stabilize the inactive conformation of the SARS-CoV-2 spike protein and therefore reduce the virus's ability to infect new cells. Since this pocket is conserved in highly pathogenic human coronaviruses, including MERS-CoV and SARS-CoV, this effect could be exploited for the development of new antiviral agents, with broad-spectrum anticoronavirus activity.
Collapse
Affiliation(s)
- Luís Queirós-Reis
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João R Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-091 Porto, Portugal
| | - Andrea Brancale
- University of Chemistry and Technology, Prague, 166 28 Praha, Czechia
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3BN, U.K
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| |
Collapse
|
5
|
Jabir NR, Rehman MT, AlAjmi MF, Ahmed BA, Tabrez S. Prioritization of bioactive compounds envisaging yohimbine as a multi targeted anticancer agent: insight from molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:10463-10477. [PMID: 36533328 DOI: 10.1080/07391102.2022.2158137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Recently, multi-targeted drugs have attracted much attention in cancer therapy where several therapeutic proteins are targeted by a single agent. Using the published scientific literature, we selected sixteen well-known anticancer targets and seven potential phytobioactive chemicals to find a multitargeted compound by screening through molecular docking. The feasible protein-ligand interaction was further predicted by protein-ligand interaction analysis and molecular dynamic simulation. The phytochemical yohimbine exhibited the lowest docking score in the range of -8.3 to -10.0 kcal/mol over other ligands with all the studied protein targets. Molecular interaction data also revealed the feasible binding of yohimbine with all targets. Moreover, the molecular simulation data also confirmed the stability of protein-ligand complexes with three most scored targets viz. ERK2, PARP1 and PIK3α. Based on our results, yohimbine seems to be the most potent compound out of those selected compounds and can be considered as effective lead molecule against the studied target proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, Tamil Nadu, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Lee HJ, Choi H, Nowakowska A, Kang LW, Kim M, Kim YB. Antiviral Activity Against SARS-CoV-2 Variants Using in Silico and in Vitro Approaches. J Microbiol 2023; 61:703-711. [PMID: 37358709 DOI: 10.1007/s12275-023-00062-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence in 2019 led to global health crises and the persistent risk of viral mutations. To combat SARS-CoV-2 variants, researchers have explored new approaches to identifying potential targets for coronaviruses. This study aimed to identify SARS-CoV-2 inhibitors using drug repurposing. In silico studies and network pharmacology were conducted to validate targets and coronavirus-associated diseases to select potential candidates, and in vitro assays were performed to evaluate the antiviral effects of the candidate drugs to elucidate the mechanisms of the viruses at the molecular level and determine the effective antiviral drugs for them. Plaque and cytopathic effect reduction were evaluated, and real-time quantitative reverse transcription was used to evaluate the antiviral activity of the candidate drugs against SARS-CoV-2 variants in vitro. Finally, a comparison was made between the molecular docking binding affinities of fenofibrate and remdesivir (positive control) to conventional and identified targets validated from protein-protein interaction (PPI). Seven candidate drugs were obtained based on the biological targets of the coronavirus, and potential targets were identified by constructing complex disease targets and PPI networks. Among the candidates, fenofibrate exhibited the strongest inhibition effect 1 h after Vero E6 cell infection with SARS-CoV-2 variants. This study identified potential targets for coronavirus disease (COVID-19) and SARS-CoV-2 and suggested fenofibrate as a potential therapy for COVID-19.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hanul Choi
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Aleksandra Nowakowska
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Minjee Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
7
|
Fadlallah S, Julià C, García-Vallvé S, Pujadas G, Serratosa F. Drug Potency Prediction of SARS-CoV-2 Main Protease Inhibitors Based on a Graph Generative Model. Int J Mol Sci 2023; 24:8779. [PMID: 37240128 PMCID: PMC10218534 DOI: 10.3390/ijms24108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The prediction of a ligand potency to inhibit SARS-CoV-2 main protease (M-pro) would be a highly helpful addition to a virtual screening process. The most potent compounds might then be the focus of further efforts to experimentally validate their potency and improve them. A computational method to predict drug potency, which is based on three main steps, is defined: (1) defining the drug and protein in only one 3D structure; (2) applying graph autoencoder techniques with the aim of generating a latent vector; and (3) using a classical fitting model to the latent vector to predict the potency of the drug. Experiments in a database of 160 drug-M-pro pairs, from which the pIC50 is known, show the ability of our method to predict their drug potency with high accuracy. Moreover, the time spent to compute the pIC50 of the whole database is only some seconds, using a current personal computer. Thus, it can be concluded that a computational tool that predicts, with high reliability, the pIC50 in a cheap and fast way is achieved. This tool, which can be used to prioritize which virtual screening hits, will be further examined in vitro.
Collapse
Affiliation(s)
- Sarah Fadlallah
- Research Group ASCLEPIUS: Smart Technology for Smart Healthcare, Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (S.F.); (C.J.)
| | - Carme Julià
- Research Group ASCLEPIUS: Smart Technology for Smart Healthcare, Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (S.F.); (C.J.)
| | - Santiago García-Vallvé
- Research Group in Cheminformatics and Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (S.G.-V.); (G.P.)
| | - Gerard Pujadas
- Research Group in Cheminformatics and Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (S.G.-V.); (G.P.)
| | - Francesc Serratosa
- Research Group ASCLEPIUS: Smart Technology for Smart Healthcare, Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (S.F.); (C.J.)
| |
Collapse
|
8
|
Chun CY, Khor SXY, Chia AYY, Tang YQ. In silico study of potential SARS-CoV-2 antagonist from Clitoria ternatea. Int J Health Sci (Qassim) 2023; 17:3-10. [PMID: 37151745 PMCID: PMC10155250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Objectives In this study, we implemented a structure-based virtual screening protocol in search of natural bioactive compounds in Clitoria ternatea that could inhibit the viral Mpro. Methods A library of twelve main bioactive compounds in C. ternatea was created from PubChem database by minimizing ligand structure in PyRx software to increase the ligand flexibility. Molecular docking studies were performed by targeting Mpro (PDB ID: 6lu7) via Discovery Studio Visualiser and PyRx platforms. Top hits compounds were then selected to study their Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug likeness properties through pkCSM pharmacokinetics tool to understand the stability, interaction, conformational changes, and pharmaceutical relevant parameters. Results This investigation found that, in the molecular docking simulation, four bioactive compounds (procyanidin A2 [-9.3 kcal/mol], quercetin-3-rutinoside [-8.9 kcal/mol], delphinidin-3-O-glucoside [-8.3 kcal/mol], and ellagic acid [-7.4 kcal/mol]) showed producing the strongest binding affinity to the Mpro of severe acute respiratory syndrome coronavirus 2, as compared to positive control (N3 inhibitor) (-7.5 kcal/mol). These binding energies were found to be favorable for an efficient docking and resultant. In addition, the stability of quercetin-3-rutinoside and ellagic acid is higher without any unfavorable bond. The ADMET and drug likeness of these two compounds were found that they are considered an effective and safe coronavirus disease 2019 (COVID-19) inhibitors through Lipinski's Rule, absorption, distribution, metabolism, and toxicity properties. Conclusion From these results, it was concluded that C. ternatea possess potential therapeutic properties against COVID-19.
Collapse
Affiliation(s)
- Chian Ying Chun
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Sabrina Xin Yi Khor
- School of Biosciences, Faculty of Health and Medical Sciences Taylor’s University, Subang Jaya, Malaysia
| | - Adeline Yoke Yin Chia
- Centre for Drug Discovery and Molecular Pharmacology, Taylor’s University, Subang Jaya, Malaysia
| | - Yin-Quan Tang
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
9
|
Shanmugam A, Venkattappan A, Gromiha MM. Structure based Drug Designing Approaches in SARS-CoV-2 Spike Inhibitor Design. Curr Top Med Chem 2023; 22:2396-2409. [PMID: 36330617 DOI: 10.2174/1568026623666221103091658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The COVID-19 outbreak and the pandemic situation have hastened the research community to design a novel drug and vaccine against its causative organism, the SARS-CoV-2. The spike glycoprotein present on the surface of this pathogenic organism plays an immense role in viral entry and antigenicity. Hence, it is considered an important drug target in COVID-19 drug design. Several three-dimensional crystal structures of this SARS-CoV-2 spike protein have been identified and deposited in the Protein DataBank during the pandemic period. This accelerated the research in computer- aided drug designing, especially in the field of structure-based drug designing. This review summarizes various structure-based drug design approaches applied to this SARS-CoV-2 spike protein and its findings. Specifically, it is focused on different structure-based approaches such as molecular docking, high-throughput virtual screening, molecular dynamics simulation, drug repurposing, and target-based pharmacophore modelling and screening. These structural approaches have been applied to different ligands and datasets such as FDA-approved drugs, small molecular chemical compounds, chemical libraries, chemical databases, structural analogs, and natural compounds, which resulted in the prediction of spike inhibitors, spike-ACE-2 interface inhibitors, and allosteric inhibitors.
Collapse
Affiliation(s)
- Anusuya Shanmugam
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, 636308, Tamil Nadu, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology ,Madras, Chennai, 600036, Tamil Nadu, India
| | - Anbazhagan Venkattappan
- Department of Chemistry, Vinayaka Mission's Kirupananda Variyar Arts and Science College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, 636308, Tamil Nadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology ,Madras, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
10
|
Abavisani M, Rahimian K, Mahdavi B, Tokhanbigli S, Mollapour Siasakht M, Farhadi A, Kodori M, Mahmanzar M, Meshkat Z. Mutations in SARS-CoV-2 structural proteins: a global analysis. Virol J 2022; 19:220. [PMID: 36528612 PMCID: PMC9759450 DOI: 10.1186/s12985-022-01951-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Emergence of new variants mainly variants of concerns (VOC) is caused by mutations in main structural proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, we aimed to investigate the mutations among structural proteins of SARS-CoV-2 globally. METHODS We analyzed samples of amino-acid sequences (AASs) for envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins from the declaration of the coronavirus 2019 (COVID-19) as pandemic to January 2022. The presence and location of mutations were then investigated by aligning the sequences to the reference sequence and categorizing them based on frequency and continent. Finally, the related human genes with the viral structural genes were discovered, and their interactions were reported. RESULTS The results indicated that the most relative mutations among the E, M, N, and S AASs occurred in the regions of 7 to 14, 66 to 88, 164 to 205, and 508 to 635 AAs, respectively. The most frequent mutations in E, M, N, and S proteins were T9I, I82T, R203M/R203K, and D614G. D614G was the most frequent mutation in all six geographical areas. Following D614G, L18F, A222V, E484K, and N501Y, respectively, were ranked as the most frequent mutations in S protein globally. Besides, A-kinase Anchoring Protein 8 Like (AKAP8L) was shown as the linkage unit between M, E, and E cluster genes. CONCLUSION Screening the structural protein mutations can help scientists introduce better drug and vaccine development strategies.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Tokhanbigli
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Mollapour Siasakht
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Amin Farhadi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mansoor Kodori
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran.
| | - Zahra Meshkat
- Department of Microbiology and Virology, School of Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Ho HPT, Vo DNK, Lin TY, Hung JN, Chiu YH, Tsai MH. Ganoderma microsporum immunomodulatory protein acts as a multifunctional broad-spectrum antiviral against SARS-CoV-2 by interfering virus binding to the host cells and spike-mediated cell fusion. Biomed Pharmacother 2022; 155:113766. [PMID: 36271550 PMCID: PMC9515347 DOI: 10.1016/j.biopha.2022.113766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus that has caused over 6 million fatalities. SARS-CoV-2 variants with spike mutations are frequently endowed with a strong capability to escape vaccine-elicited protection. Due to this characteristic, a broad-spectrum inhibitor against SARS-CoV-2 infection is urgently demanded. Ganoderma microsporum immunomodulatory protein (GMI) was previously reported to alleviate infection of SARS-CoV-2 through ACE2 downregulation whereas the impact of GMI on virus itself was less understood. Our study aims to determine the effects of GMI on SARS-CoV-2 pseudovirus and the more detailed mechanisms of GMI inhibition against SARS-CoV-2 pseudovirus infection. METHODS ACE2-overexpressing HEK293T cells (HEK293T/ACE2) and SARS-CoV-2 pseudoviruses carrying spike variants were used to study the effects of GMI in vitro. Infectivity was evaluated by fluorescence microscopy and flow cytometry. Fusion rate mediated by SARS-CoV-2 spike protein was examined with split fluorescent protein /luciferase systems. The interactions of GMI with SARS-CoV-2 pseudovirus and ACE2 were investigated by immunoprecipitation and immunoblotting. RESULTS GMI broadly blocked SARS-CoV-2 infection in various cell lines. GMI effectively inhibited the infection of pseudotyped viruses carrying different emerged spike variants, including Delta and Omicron strains, on HEK293T/hACE2 cells. In cell-free virus infection, GMI dominantly impeded the binding of spike-bearing pseudotyped viruses to ACE2-expressing cells. In cell-to-cell fusion model, GMI could efficiently inhibit spike-mediated syncytium without the requirement of ACE2 downregulation. CONCLUSIONS GMI, an FDA-approved dietary ingredient, acts as a multifunctional broad-spectrum antiviral against SARS-CoV-2 and could become a promising candidate for preventing or treating SARS-CoV-2 associated diseases.
Collapse
Affiliation(s)
- Ha Phan Thanh Ho
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Di Ngoc Kha Vo
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Ning Hung
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Hui Chiu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Agrawal S, Pathak E, Mishra R, Mishra V, Parveen A, Mishra SK, Byadgi PS, Dubey SK, Chaudhary AK, Singh V, Chaurasia RN, Atri N. Computational exploration of the dual role of the phytochemical fortunellin: Antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host. Comput Biol Med 2022; 149:106049. [PMID: 36103744 PMCID: PMC9452420 DOI: 10.1016/j.compbiomed.2022.106049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections generate approximately one million virions per day, and the majority of available antivirals are ineffective against it due to the virus's inherent genetic mutability. This necessitates the investigation of concurrent inhibition of multiple SARS-CoV-2 targets. We show that fortunellin (acacetin 7-O-neohesperidoside), a phytochemical, is a promising candidate for preventing and treating coronavirus disease (COVID-19) by targeting multiple key viral target proteins. Fortunellin supports protective immunity while inhibiting pro-inflammatory cytokines and apoptosis pathways and protecting against tissue damage. Fortunellin is a phytochemical found in Gojihwadi kwath, an Indian traditional Ayurvedic formulation with an antiviral activity that is effective in COVID-19 patients. The mechanistic action of its antiviral activity, however, is unknown. The current study comprehensively evaluates the potential therapeutic mechanisms of fortunellin in preventing and treating COVID-19. We have used molecular docking, molecular dynamics simulations, free-energy calculations, host target mining of fortunellin, gene ontology enrichment, pathway analyses, and protein-protein interaction analysis. We discovered that fortunellin reliably binds to key targets that are necessary for viral replication, growth, invasion, and infectivity including Nucleocapsid (N-CTD) (-54.62 kcal/mol), Replicase-monomer at NSP-8 binding site (-34.48 kcal/mol), Replicase-dimer interface (-31.29 kcal/mol), Helicase (-30.02 kcal/mol), Papain-like-protease (-28.12 kcal/mol), 2'-O-methyltransferase (-23.17 kcal/mol), Main-protease (-21.63 kcal/mol), Replicase-monomer at dimer interface (-22.04 kcal/mol), RNA-dependent-RNA-polymerase (-19.98 kcal/mol), Nucleocapsid-NTD (-16.92 kcal/mol), and Endoribonuclease (-16.81 kcal/mol). Furthermore, we identify and evaluate the potential human targets of fortunellin and its effect on the SARS-CoV-2 infected tissues, including normal-human-bronchial-epithelium (NHBE) and lung cells and organoids such as pancreatic, colon, liver, and cornea using a network pharmacology approach. Thus, our findings indicate that fortunellin has a dual role; multi-target antiviral activities against SARS-CoV-2 and immunomodulatory capabilities against the host.
Collapse
Affiliation(s)
- Shivangi Agrawal
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Ekta Pathak
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Rajeev Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India.
| | - Vibha Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Afifa Parveen
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | | | | | - Sushil Kumar Dubey
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, India
| | | | | | | | - Neelam Atri
- Department of Botany, MMV, Banaras Hindu University, India
| |
Collapse
|
13
|
Sansone C, Pistelli L, Del Mondo A, Calabrone L, Fontana A, Noonan DM, Albini A, Brunet C. The Microalgal Diatoxanthin Inflects the Cytokine Storm in SARS-CoV-2 Stimulated ACE2 Overexpressing Lung Cells. Antioxidants (Basel) 2022; 11:antiox11081515. [PMID: 36009234 PMCID: PMC9405469 DOI: 10.3390/antiox11081515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Contact between SARS-CoV-2 and human lung cells involves the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor on epithelial cells, the latter being strongly involved in the regulation of inflammation as well as blood pressure homeostasis. SARS-CoV-2 infection is characterized by a strong inflammatory response defined as a “cytokine storm”. Among recent therapeutic approaches against SARS-CoV-2 targeting the dramatic inflammatory reaction, some natural products are promising. Diatoms are microalgae able to produce bioactive secondary metabolites, such as the xanthophyll diatoxanthin (Dt). The aim of this study is to demonstrate the anti-inflammatory effects of Dt on the A549-hACE2 lung cell line, exploring its interaction with the ACE2 receptor, as well as depicting its role in inhibiting a cytokine storm induced by the SARS-CoV-2 spike glycoprotein. Results showed that Dt enhanced the cell metabolism, e.g., the percent of metabolically active cells, as well as the ACE2 enzymatic activity. Moreover, Dt strongly affected the response of the SARS-CoV-2 spike glycoprotein-exposed A549-hACE2 cells in decreasing the interleukin-6 production and increasing the interleukin-10 release. Moreover, Dt upregulated genes encoding for the interferon pathway related to antiviral defense and enhanced proteins belonging to the innate immunity response. The potential interest of Dt as a new therapeutic agent in the treatment and/or prevention of the severe inflammatory syndrome related to SARS-CoV-2 infection is postulated.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
| | - Luana Calabrone
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy;
- Department of Biology, University of Naples “Federico II”, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Douglas M. Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Adriana Albini
- IRCCS European Institute of Oncology, IEO, 20141 Milan, Italy;
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, sede Molosiglio Marina Acton, Via Ammiraglio F. Acton 55, 80133 Napoli, Italy; (L.P.); (A.D.M.); (L.C.)
- Correspondence: (C.S.); (C.B.); Tel.: +39-0815833262 (C.S. & C.B.)
| |
Collapse
|
14
|
Mohammed AO, Abo-Idrees MI, Makki AA, Ibraheem W, Alzain AA. Drug repurposing against main protease and RNA-dependent RNA polymerase of SARS-CoV-2 using molecular docking, MM-GBSA calculations and molecular dynamics. Struct Chem 2022; 33:1553-1567. [PMID: 35789829 PMCID: PMC9243907 DOI: 10.1007/s11224-022-01999-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 10/30/2022]
Abstract
A virus called severe acute respiratory distress syndrome coronavirus type 2 (SARS‐CoV‐2) is the causing organism of coronavirus disease 2019 (COVID-19), which has severely affected human life and threatened public health. The pandemic took millions of lives worldwide and caused serious negative effects on human society and the economy. SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) are interesting targets due to their crucial role in viral replication and growth. Since there is only one approved therapy for COVID-19, drug repurposing is a promising approach to finding molecules with potential activity against COVID-19 in a short time and at minimal cost. In this study, virtual screening was performed on the ChEMBL library containing 9923 FDA-approved drugs, using various docking filters with different accuracy. The best drugs with the highest docking scores were further examined for molecular dynamics (MD) studies and MM-GBSA calculations. The results of this study suggest that nadide, cangrelor and denufosol are promising potential candidates against COVID-19. Further in vitro, preclinical and clinical studies of these candidates would help to discover safe and effective anti-COVID-19 drugs.
Collapse
|