1
|
Rzymski P, Zarębska-Michaluk D, Parczewski M, Genowska A, Poniedziałek B, Strukcinskiene B, Moniuszko-Malinowska A, Flisiak R. The burden of infectious diseases throughout and after the COVID-19 pandemic (2020-2023) and Russo-Ukrainian war migration. J Med Virol 2024; 96:e29651. [PMID: 38712743 DOI: 10.1002/jmv.29651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Understanding how the infectious disease burden was affected throughout the COVID-19 pandemic is pivotal to identifying potential hot spots and guiding future mitigation measures. Therefore, our study aimed to analyze the changes in the rate of new cases of Poland's most frequent infectious diseases during the entire COVID-19 pandemic and after the influx of war refugees from Ukraine. We performed a registry-based population-wide study in Poland to analyze the changes in the rate of 24 infectious disease cases from 2020 to 2023 and compared them to the prepandemic period (2016-2019). Data were collected from publicly archived datasets of the Epimeld database published by national epidemiological authority institutions. The rate of most of the studied diseases (66.6%) revealed significantly negative correlations with the rate of SARS-CoV-2 infections. For the majority of infectious diseases, it substantially decreased in 2020 (in case of 83%) and 2021 (63%), following which it mostly rebounded to the prepandemic levels and, in some cases, exceeded them in 2023 when the exceptionally high annual rates of new cases of scarlet fever, Streptococcus pneumoniae infections, HIV infections, syphilis, gonococcal infections, and tick-borne encephalitis were noted. The rate of Clostridioides difficile enterocolitis was two-fold higher than before the pandemic from 2021 onward. The rate of Legionnaires' disease in 2023 also exceeded the prepandemic threshold, although this was due to a local outbreak unrelated to lifted COVID-19 pandemic restrictions or migration of war refugees. The influx of war migrants from Ukraine could impact the epidemiology of sexually transmitted diseases. The present analysis indicates that continued efforts are needed to prevent COVID-19 from overwhelming healthcare systems again and decreasing the control over the burden of other infectious diseases. It also identifies the potential tipping points that require additional mitigation measures, which are also discussed in the paper, to avoid escalation in the future.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Genowska
- Department of Public Health, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Dekaj E, Gjini E. Pneumococcus and the stress-gradient hypothesis: A trade-off links R 0 and susceptibility to co-colonization across countries. Theor Popul Biol 2024; 156:77-92. [PMID: 38331222 DOI: 10.1016/j.tpb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Modern molecular technologies have revolutionized our understanding of bacterial epidemiology, but reported data across studies and different geographic endemic settings remain under-integrated in common theoretical frameworks. Pneumococcus serotype co-colonization, caused by the polymorphic bacteria Streptococcus pneumoniae, has been increasingly investigated and reported in recent years. While the global genomic diversity and serotype distribution of S. pneumoniae have been well-characterized, there is limited information on how co-colonization patterns vary globally, critical for understanding the evolution and transmission dynamics of the bacteria. Gathering a rich dataset of cross-sectional pneumococcal colonization studies in the literature, we quantified patterns of transmission intensity and co-colonization prevalence variation in children populations across 17 geographic locations. Linking these data to an SIS model with cocolonization under the assumption of quasi-neutrality among multiple interacting strains, our analysis reveals strong patterns of negative co-variation between transmission intensity (R0) and susceptibility to co-colonization (k). In line with expectations from the stress-gradient-hypothesis in ecology (SGH), pneumococcus serotypes appear to compete more in co-colonization in high-transmission settings and compete less in low-transmission settings, a trade-off which ultimately leads to a conserved ratio of single to co-colonization μ=1/(R0-1)k. From the mathematical model's behavior, such conservation suggests preservation of 'stability-diversity-complexity' regimes in coexistence of similar co-colonizing strains. We find no major differences in serotype compositions across studies, pointing to adaptation of the same set of serotypes across variable environments as an explanation for their differential interaction in different transmission settings. Our work highlights that the understanding of transmission patterns of Streptococcus pneumoniae from global scale epidemiological data can benefit from simple analytical approaches that account for quasi-neutrality among strains, co-colonization, as well as variable environmental adaptation.
Collapse
Affiliation(s)
- Ermanda Dekaj
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
3
|
Zdanowicz K, Lewandowski D, Majewski P, Półkośnik K, Liwoch-Nienartowicz N, Reszeć-Giełażyn J, Lebensztejn DM, Sulik A, Toczyłowski K. Clinical Presentation and Co-Detection of Respiratory Pathogens in Children Under 5 Years with Non-COVID-19 Bacterial and Viral Respiratory Tract Infections: A Prospective Study in Białystok, Poland (2021-2022). Med Sci Monit 2023; 29:e941785. [PMID: 37794657 PMCID: PMC10563589 DOI: 10.12659/msm.941785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Respiratory tract infections (RTIs) in children often involve a complex interplay between viruses and bacteria. This study aimed to evaluate clinical presentation in children under 5 years old diagnosed with non-COVID-19 bacterial and viral respiratory tract co-infections between October 2021 and May 2022 in Białystok, Poland. MATERIAL AND METHODS We recruited 100 children under 5 years with RTIs who tested negative for SARS-CoV-2. Nasopharyngeal swabs were screened for 19 viruses and 7 bacterial strains using molecular assays. RESULTS Viral pathogens were detected in 71% of patients and bacterial pathogens were detected in 59%. The most common pathogens were Haemophilus influenzae (n=48), rhinoviruses (n=32), and Streptococcus pneumoniae (n=30). Single pathogens were detected in 36%, dual in 37%, triple in 15%, and quadruple in 2%. Bacterial pathogens were co-detected with viruses in 40 cases, mostly with rhinoviruses (n=15). Two different viruses were found in 14 children and the most common co-detection was adenovirus with rhinovirus (n=5); dyspnea (63% vs 11%) and wheezing (75% vs 22%) were more common in children with human bocavirus. Fever was a common symptom in children with human adenovirus (88% vs 58%). Detection of bacteria and multiple detections were more common in day-care attendees, but were not associated with clinical picture of RTI. CONCLUSIONS Consistent with previous studies, we found a high prevalence of rhinoviruses, despite ongoing implementation of non-pharmaceutical interventions to contain the COVID-19 pandemic. Co-detection of 2 different respiratory pathogens was frequent, but we found no evidence that this was associated with the severity of infections.
Collapse
Affiliation(s)
- Katarzyna Zdanowicz
- Department of Paediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Białystok, Białystok, Poland
| | - Dawid Lewandowski
- Department of Paediatric Infectious Diseases, Medical University of Białystok, Białystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Kinga Półkośnik
- Department of Paediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Białystok, Białystok, Poland
| | | | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Białystok, Białystok, Poland
| | - Dariusz Marek Lebensztejn
- Department of Paediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Białystok, Białystok, Poland
| | - Artur Sulik
- Department of Paediatric Infectious Diseases, Medical University of Białystok, Białystok, Poland
| | - Kacper Toczyłowski
- Department of Paediatric Infectious Diseases, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
4
|
Laxton CS, Peno C, Hahn AM, Allicock OM, Perniciaro S, Wyllie AL. The potential of saliva as an accessible and sensitive sample type for the detection of respiratory pathogens and host immunity. THE LANCET. MICROBE 2023; 4:e837-e850. [PMID: 37516121 DOI: 10.1016/s2666-5247(23)00135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 07/31/2023]
Abstract
Despite its prominence in early scientific records, the usefulness of saliva as a respiratory specimen has been de-emphasised over the past century. However, due to its low cost and reliance on specific supply chains and the non-invasive nature of its collection, its benefits over swab-based specimens are again becoming increasingly recognised. These benefits were highlighted over the course of the COVID-19 pandemic, where saliva emerged as a more practical, clinically non-inferior sample type for the detection of SARS-CoV-2 and saw numerous saliva-based diagnostic tests approved for clinical use. Looking forward, as saliva uniquely contains both respiratory secretions and immunological components, it has potentially wide applications, ranging from clinical diagnostics to post-vaccine disease burden and immunity surveillance. This Personal View seeks to summarise the existing evidence for the use of saliva in detecting respiratory pathogens, beyond SARS-CoV-2, as well as detailing methodological factors that can influence sample quality and thus, clinical utility.
Collapse
Affiliation(s)
- Claire S Laxton
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chikondi Peno
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Stephanie Perniciaro
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
5
|
Wyllie AL, Rots NY, Wijmenga-Monsuur AJ, van Houten MA, Sanders EAM, Trzciński K. Saliva as an alternative sample type for detection of pneumococcal carriage in young children. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001394. [PMID: 37819029 PMCID: PMC10634364 DOI: 10.1099/mic.0.001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
For children, the gold standard for the detection of pneumococcal carriage is conventional culture of a nasopharyngeal swab. Saliva, however, has a history as one of the most sensitive methods for surveillance of pneumococcal colonization and has recently been shown to improve carriage detection in older age groups. Here, we compared the sensitivity of paired nasopharyngeal and saliva samples from PCV7-vaccinated 24-month-old children for pneumococcal carriage detection using conventional and molecular detection methods. Nasopharyngeal and saliva samples were collected from 288 24-month-old children during the autumn/winter, 2012/2013. All samples were first processed by conventional diagnostic culture. Next, DNA extracted from all plate growth was tested by qPCR for the presence of the pneumococcal genes piaB and lytA and a subset of serotypes. By culture, 161/288 (60 %) nasopharyngeal swabs tested positive for pneumococcus, but detection was not possible from saliva due to abundant polymicrobial growth on culture plates. By qPCR, 155/288 (54 %) culture-enriched saliva samples and 187/288 (65 %) nasopharyngeal swabs tested positive. Altogether, 219/288 (76 %) infants tested positive for pneumococcus, with qPCR-based carriage detection of culture-enriched nasopharyngeal swabs detecting significantly more carriers compared to either conventional culture (P<0.001) or qPCR detection of saliva (P=0.002). However, 32/219 (15 %) carriers were only positive in saliva, contributing significantly to the overall number of carriers detected (P=0.002). While testing nasopharyngeal swabs by qPCR proved most sensitive for pneumococcal detection in infants, saliva sampling could be considered as complementary to provide additional information on carriage and serotypes that may not be detected in the nasopharynx and may be particularly useful in longitudinal studies, requiring repeated sampling of study participants.
Collapse
Affiliation(s)
- Anne L. Wyllie
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Elisabeth A. M. Sanders
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Krzysztof Trzciński
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Kielbik K, Grywalska E, Glowniak A, Mielnik-Niedzielska G, Korona-Glowniak I. The Molecular Epidemiology of Pneumococcal Strains Isolated from the Nasopharynx of Preschool Children 3 Years after the Introduction of the PCV Vaccination Program in Poland. Int J Mol Sci 2023; 24:ijms24097883. [PMID: 37175589 PMCID: PMC10178342 DOI: 10.3390/ijms24097883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The genetic mechanisms of resistance, clonal composition, and the occurrence of pili were analyzed in 39 pneumococcal strains isolated from healthy children in the southeastern region of Poland. Strains with resistance to combinations of erythromycin, clindamycin, and tetracycline were found in clonal groups (CGs) related to Tennessee 23F-4 and Taiwan 19F-14 clones. Capsular switching possibly occurred in the Spain 9V-3 clone and its variants to serotypes 35B and 6A, as well as DLVs of Tennessee 23F-4 to serotype 23A. The double-locus variants of Colombia 23F-26 presented serotype 23B. The major transposons carrying the erythromycin and tetracycline resistance genes were Tn6002 (66.6%), followed by Tn916 (22.2%) and Tn2009 (11.1%). The macrolide efflux genetic assembly (MEGA) element was found in 41.7% of all erythromycin-resistant isolates. The majority of the isolates carrying the PI-1 gene belonged to the CGs related to the Spain 9V-3 clone expressing serotypes 35B and 6A, and the presence of both PI-1 and PI-2 was identified in CG4 consisting of the isolates related to the Taiwan 19F-14 clone expressing serotypes 19F and 19A. Importantly, in the nearest future, the piliated strains of serogroups 23B, 23A, and 35B may be of concern, being a possible origin of the emerging clones of piliated non-vaccine pneumococcal serotypes in Poland. This study reveals that nasopharyngeal carriage in children is an important reservoir for the selection and spreading of new drug-resistant pneumococcal clones in the community after the elimination of vaccine serotypes.
Collapse
Affiliation(s)
- Karolina Kielbik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Clinical Immunology, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Glowniak
- Department of Cardiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Grażyna Mielnik-Niedzielska
- Department of Pediatric Otolaryngology, Phoniatrics and Audiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Miellet WR, van Veldhuizen J, Litt D, Mariman R, Wijmenga-Monsuur AJ, Nieuwenhuijsen T, Christopher J, Thombre R, Eletu S, Bosch T, Rots NY, van Houten MA, Miller E, Fry NK, Sanders EAM, Trzciński K. A spitting image: molecular diagnostics applied to saliva enhance detection of Streptococcus pneumoniae and pneumococcal serotype carriage. Front Microbiol 2023; 14:1156695. [PMID: 37138599 PMCID: PMC10149683 DOI: 10.3389/fmicb.2023.1156695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background Despite strong historical records on the accuracy of saliva testing, oral fluids are considered poorly suited for pneumococcal carriage detection. We evaluated an approach for carriage surveillance and vaccine studies that increases the sensitivity and specificity of pneumococcus and pneumococcal serotype detection in saliva samples. Methods Quantitative PCR (qPCR)-based methods were applied to detect pneumococcus and pneumococcal serotypes in 971 saliva samples collected from 653 toddlers and 318 adults. Results were compared with culture-based and qPCR-based detection in nasopharyngeal samples collected from children and in nasopharyngeal and oropharyngeal samples collected from adults. Optimal C q cut-offs for positivity in qPCRs were determined via receiver operating characteristic curve analysis and accuracy of different approaches was assessed using a composite reference for pneumococcal and for serotype carriage based on isolation of live pneumococcus from the person or positivity of saliva samples determined with qPCR. To evaluate the inter-laboratory reproducibility of the method, 229 culture-enriched samples were tested independently in the second center. Results In total, 51.5% of saliva samples from children and 31.8% of saliva samples from adults were positive for pneumococcus. Detection of pneumococcus by qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to diagnostic culture of nasopharyngeal samples in children (Cohen's κ: 0.69-0.79 vs. 0.61-0.73) and in adults (κ: 0.84-0.95 vs. 0.04-0.33) and culture of oropharyngeal samples in adults (κ: 0.84-0.95 vs. -0.12-0.19). Similarly, detection of serotypes with qPCR in culture-enriched saliva exhibited enhanced sensitivity and higher agreement with a composite reference compared to nasopharyngeal culture in children (κ: 0.73-0.82 vs. 0.61-0.73) and adults (κ: 0.90-0.96 vs. 0.00-0.30) and oropharyngeal culture in adults (κ: 0.90-0.96 vs. -0.13 to 0.30). However, results of qPCRs targeting serotype 4, 5, and 17F and serogroups 9, 12, and 35 were excluded due to assays' lack of specificity. We observed excellent quantitative agreement for qPCR-based detection of pneumococcus between laboratories. After exclusion of serotype/serogroup-specific assays with insufficient specificity, moderate agreement (κ 0.68, 95% CI 0.58-0.77) was observed. Conclusion Molecular testing of culture-enriched saliva samples improves the sensitivity of overall surveillance of pneumococcal carriage in children and adults, but limitations of qPCR-based approaches for pneumococcal serotypes carriage detection should be considered.
Collapse
Affiliation(s)
- Willem R. Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Willem R. Miellet,
| | - Janieke van Veldhuizen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Rob Mariman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Tessa Nieuwenhuijsen
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jennifer Christopher
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Rebecca Thombre
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Elizabeth Miller
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Norman K. Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency, London, United Kingdom
- Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, London, United Kingdom
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Krzysztof Trzciński,
| |
Collapse
|