1
|
Blinov A, Blinova A, Nagdalian A, Siddiqui SA, Gvozdenko A, Golik A, Rekhman Z, Filippov D, Shariati MA, Al-Farga A, Al-Maaqar SM. Sustainable detergent-disinfectant agent based on whey mineralizate and silver nanoparticles for cleaner production in dairy industry. Sci Rep 2024; 14:23943. [PMID: 39397020 PMCID: PMC11471832 DOI: 10.1038/s41598-024-71542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Detergents and disinfectants for dairy industry must meet a variety of characteristics, including low toxicity, high antibacterial activity, and excellent rinsing of pollutants from working surfaces. This work presents an innovative detergent-disinfectant agent based on whey mineralizate and silver nanoparticles (Ag NPs), which allows reducing production costs and ensuring high cleanliness of treated surfaces compared to analogues. For this purpose, a method for obtaining sols of Ag NPs stabilized with didecyldimethylammonium bromide (Ag NPs-DDAB) was developed and optimized using neural network algorithms. Characterization of Ag NPs-DDAB showed particles with a radius of 4.5 nm and 20 nm, stable in the pH range from 2 to 11. An acute toxicity study of Ag NPs in mice showed LD50 = 4230 μg/kg. Based on the degree of accumulation and inhalation toxicity, Ag NPs-DDAB are classified as low-hazard chemicals. The developed detergent-disinfectant had a washability of about 90%, high antimicrobial activity (0.005 mg/mL) against Penicillium roqueforti and a sanitary and hygienic effect on coliforms, general contamination and pathogenic microorganisms, a low-corrosive effect and low toxicity (315 mg/mL) to Danio rerio. It was concluded that the use of detergent-disinfectant agent will completely eliminate the consumption of water for the equipment cleaning process and can be used to clean an electrodialysis unit's circuits, enabling the utilization of secondary waste from membrane milk processing and promoting resource efficiency and cleaner production in the dairy industry.
Collapse
Affiliation(s)
- Andrey Blinov
- Department of Physics and Technology of Nanostructures and Materials, North Caucasus Federal University, Stavropol, Russia, 355000
| | - Anastasiya Blinova
- Department of Physics and Technology of Nanostructures and Materials, North Caucasus Federal University, Stavropol, Russia, 355000
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, North Caucasus Federal University, Stavropol, Russia, 355000.
| | | | - Alexey Gvozdenko
- Department of Physics and Technology of Nanostructures and Materials, North Caucasus Federal University, Stavropol, Russia, 355000
| | - Alexey Golik
- Department of Physics and Technology of Nanostructures and Materials, North Caucasus Federal University, Stavropol, Russia, 355000
| | - Zafar Rekhman
- Department of Physics and Technology of Nanostructures and Materials, North Caucasus Federal University, Stavropol, Russia, 355000
| | - Dionis Filippov
- Department of Physics and Technology of Nanostructures and Materials, North Caucasus Federal University, Stavropol, Russia, 355000
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry, Semey Branch of the Institute, 238«G» Gagarin Ave., 050060, Almaty, Republic of Kazakhstan
| | - Ammar Al-Farga
- Department of Biochemistry, College of Science, University of Jeddah, 23218, Jeddah, Saudi Arabia
| | - Saleh M Al-Maaqar
- Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen.
| |
Collapse
|
2
|
Palma F, Dell'Annunziata F, Folliero V, Foglia F, Marca RD, Zannella C, De Filippis A, Franci G, Galdiero M. Cupferron impairs the growth and virulence of Escherichia coli clinical isolates. J Appl Microbiol 2023; 134:lxad222. [PMID: 37796875 DOI: 10.1093/jambio/lxad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
AIMS Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Francesco Foglia
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
3
|
von Hertwig AM, Prestes FS, Nascimento MS. Comparative evaluation of the effectiveness of alcohol-based sanitizers, UV-C radiation and hot air on three-age Salmonella biofilms. Food Microbiol 2023; 113:104278. [PMID: 37098425 DOI: 10.1016/j.fm.2023.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023]
Abstract
Dry sanitation is recommended to control contamination and prevent microbial growth and biofilm formation in the low-moisture food manufacturing plants. The objective of this study was to evaluate the effectiveness of dry sanitation protocols on Salmonella three-age biofilms formed on stainless steel (SS) and polypropylene (PP). Biofilms were formed for 24, 48 and 96 h at 37 °C using a cocktail of six Salmonella strains (Muenster, Miami, Glostrup, Javiana, Oranienburg, Yoruba) isolated from the peanut supply chain. Then, the surfaces were exposed to UV-C radiation, hot air (90 °C), 70% ethanol and a commercial product based on isopropyl alcohol for 5, 10, 15 and 30 min. After 30min exposure, on PP the reductions ranged from 3.2 to 4.2 log CFU/cm2 for UV-C, from 2.6 to 3.0 log CFU/cm2 for hot air, from 1.6 to 3.2 log CFU/cm2 for 70% ethanol and from 1.5 to 1.9 log CFU/cm2 for the commercial product. On SS, after the same exposure time, reductions of 1.3-2.2 log CFU/cm2, 2.2 to 3.3 log CFU/cm2, 1.7 to 2.0 log CFU/cm2 and 1.6 to 2.4 log CFU/cm2 were observed for UV-C, hot air, 70% ethanol and commercial product, respectively. UV-C was the only treatment affected by the surface material (p < 0.05) whereas the biofilm age influenced the effectiveness of UV-C and hot air (p < 0.05). For most treatment, there was significant difference among the exposure times (p < 0.05). Overall, the fastest loss in the biofilm viability was noted in the first 5 min, followed by a tail phase. The time predicted by the Weibull model for the first decimal reduction ranged from 0.04 to 9.9 min on PP and from 0.7 to 8.5 min on SS. In addition, the Weibull model indicates that most of treatments (79%) required a long-term exposure time (>30 min) to achieve 3-log reductions of Salmonella biofilms. In summary, UV-C showed the best performance on PP whereas hot air was noted to be the most effective on SS.
Collapse
Affiliation(s)
| | - Flavia S Prestes
- Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
4
|
Frantz AL. Chronic quaternary ammonium compound exposure during the COVID-19 pandemic and the impact on human health. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2023; 15:199-206. [PMCID: PMC10252167 DOI: 10.1007/s13530-023-00173-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 03/27/2024]
Abstract
Objective This review examines a relevant, and underacknowledged, emerging global public health concern—the widespread exposure to quaternary ammonium compounds (QACs) during the COVID-19 pandemic. QACs are a widely used class of cationic surfactants with broad spectrum antimicrobial activity that serve as the active ingredients in antimicrobial products. While these compounds have been used for decades, the production and consumer use of QAC-containing products have steeply risen during the COVID-19 pandemic to control and prevent the spread of the SARS-Cov-2 virus. As a result, human exposure to QACs has also drastically increased. Methods This critical review was conducted by searching the key terms “quaternary ammonium compounds,” “disinfectants,” “COVID-19,” “SARS-Cov-2,” “human health,” and “human exposure” in the major search engines, including Google Scholar, PubMed and Science Direct. Results QACs are generally considered safe and effective, yet the magnitude of QAC exposure and the subsequent health effects have not been adequately investigated. Recent studies have revealed the potential for bioaccumulation of QACs in blood and tissue. Inhalation and dermal absorption of QACs are identified as the most significant exposure routes for adults, while children and infants may be significantly more vulnerable to QAC exposure and potential adverse health effects. Conclusions QACs are an important tool to protect individual and public health, but understanding the impact of widespread QAC exposure is vital to guide best practices for QAC use and minimize the associated health risks. These pandemic era results warrant further investigation and raise additional questions about the short-term and long-term health effects of chronic QAC exposure. Clinical trial registration Not applicable.
Collapse
Affiliation(s)
- Aubrey L. Frantz
- Department of Natural Sciences, University of North Texas at Dallas, 7400 University Hills Blvd, Dallas, TX 75241 USA
| |
Collapse
|
5
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
6
|
Folliero V, Ricciardi M, Dell’Annunziata F, Pironti C, Galdiero M, Franci G, Motta O, Proto A. Deployment of a Novel Organic Acid Compound Disinfectant against Common Foodborne Pathogens. TOXICS 2022; 10:768. [PMID: 36548601 PMCID: PMC9780819 DOI: 10.3390/toxics10120768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The disinfection process represents an important activity closely linked to the removal of micro-organisms in common processing systems. Traditional disinfectants are often not sufficient to avoid the spread of food pathogens; therefore, innovative strategies for decontamination are crucial to countering microbial transmission. This study aims to assess the antimicrobial efficiency of tetrapotassium iminodisuccinic acid salt (IDSK) against the most common pathogens present on surfaces, especially in food-borne environments. METHODS IDSK was synthesized from maleic anhydride and characterized through nuclear magnetic resonance (NMR) spectroscopy (both 1H-NMR and 13C-NMR), thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) spectroscopy. The antibacterial activity was performed via the broth microdilution method and time-killing assays against Escherichia coli, Staphylococcus aureus, Salmonella enterica, Enterococcus faecalis and Pseudomonas aeruginosa (IDSK concentration range: 0.5-0.002 M). The biofilm biomass eradicating activity was assessed via a crystal violet (CV) assay. RESULTS The minimum inhibitory concentration (MIC) of IDSK was 0.25 M for all tested strains, exerting bacteriostatic action. IDSK also reduced biofilm biomass in a dose-dependent manner, reaching rates of about 50% eradication at a dose of 0.25 M. The advantages of using this innovative compound are not limited to disinfecting efficiency but also include its high biodegradability and its sustainable synthesis. CONCLUSIONS IDSK could represent an innovative and advantageous disinfectant for food processing and workers' activities, leading to a better quality of food and safer working conditions for the operators.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via S. Maria di Costantinopoli, 16, 80138 Naples, Italy
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| | - Federica Dell’Annunziata
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via S. Maria di Costantinopoli, 16, 80138 Naples, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via S. Maria di Costantinopoli, 16, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
| |
Collapse
|