1
|
Yan Z, Liu X, Liu H, Xu H, Liu Y, Li C, Wang B, Cui S, Jia T, Yang D, Zhang C, Liu X, Buesching CD, Liu D. Assessment of stress levels and reproductive condition in giant pandas: insights from hair, faecal and saliva samples. CONSERVATION PHYSIOLOGY 2024; 12:coae044. [PMID: 38962510 PMCID: PMC11221559 DOI: 10.1093/conphys/coae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Concerted conservation efforts have brought the giant panda (Ailuropoda melanoleuca) back from the brink of extinction, but pandas continue to face anthropogenic threats in the wild and breeding success in captivity remains low. Because stress can have detrimental impacts on reproduction, monitoring stress- and sex-steroid levels would help assess the effectiveness of conservation mitigation measures in panda populations as well as monitor the welfare and reproductive health of captive animals. In this proof-of-concept study, we used faecal sex steroid and cortisol concentrations (n = 867 samples collected from five males and five females at Beijing Zoo every 4 days over the course of 12 months) as a reference to investigate if testosterone, estradiol, progesterone and cortisol can be meaningfully measured in panda hair (n = 10) using radio-immuno-assays. Additionally, we calculated the ratio of testosterone to cortisol (T:C ratio) for each male, which can provide a biomarker of stress and physical performance. Our findings revealed distinct monthly variations in faecal sex-steroid and cortisol concentrations, reflecting reproductive seasonality and visitor-related stress among individual pandas. Notably, the oldest male had a significantly lower T:C ratio than other males. Our results confirm that the level of sex steroids and cortisol can be assayed by panda hair, and the hair cortisol concentrations correlate significantly with that in faeces with one month lag behind (r = 0.68, P = 0.03). However, the concentrations of hormones detected in saliva are lower than those in faeces by two orders of magnitude, making it difficult to ensure accuracy. By assessing the applicability of hair, faecal and salivary sampling, we can infer their utility in monitoring the reproductive status and acute and chronic stress levels of giant pandas, thereby providing a means to gauge the success of ongoing habitat restoration efforts and to discuss the feasibility of sample collection from wild populations.
Collapse
Affiliation(s)
- Zheng Yan
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, Department of Ecology, College of Life Sciences, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Xiaoyan Liu
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, Department of Ecology, College of Life Sciences, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Haoqiu Liu
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, Department of Ecology, College of Life Sciences, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Haihong Xu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Yanhui Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Changqing Li
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Bo Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Shengnan Cui
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Di Yang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, No.137, Xizhimenwai Street, Xicheng District, Beijing 100044, China
| | - Christina D Buesching
- Department of Biology, Irving K. Barber Faculty of Sciences, The University of British Columbia, Okanagan, Kelowna, British Columbia V1V 1V7, Canada
| | - Dingzhen Liu
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, Department of Ecology, College of Life Sciences, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
2
|
Veloso-Frías J, Soto-Gamboa M, Mastromonaco G, Acosta-Jamett G. Seasonal Hair Glucocorticoid Fluctuations in Wild Mice ( Phyllotis darwini) within a Semi-Arid Landscape in North-Central Chile. Animals (Basel) 2024; 14:1260. [PMID: 38731264 PMCID: PMC11083726 DOI: 10.3390/ani14091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Mammals in drylands face environmental challenges exacerbated by climate change. Currently, human activity significantly impacts these environments, and its effects on the energy demands experienced by individuals have not yet been determined. Energy demand in organisms is managed through elevations in glucocorticoid levels, which also vary with developmental and health states. Here, we assessed how anthropization, individual characteristics, and seasonality influence hair glucocorticoid concentration in the Darwin's leaf-eared mouse (Phyllotis darwini) inhabiting two areas with contrasting anthropogenic intervention in a semi-arid ecosystem of northern Chile. Hair samples were collected (n = 199) to quantify hair corticosterone concentration (HCC) using enzyme immunoassays; additionally, sex, body condition, and ectoparasite load were recorded. There were no differences in HCC between anthropized areas and areas protected from human disturbance; however, higher concentrations were recorded in females, and seasonal fluctuations were experienced by males. The results indicate that animals inhabiting semi-arid ecosystems are differentially stressed depending on their sex. Additionally, sex and season have a greater impact on corticosterone concentration than anthropogenic perturbation, possibly including temporal factors, precipitation, and primary production. The influence of sex and seasonality on HCC in P. darwini make it necessary to include these variables in future stress assessments of this species.
Collapse
Affiliation(s)
- Joseline Veloso-Frías
- Institute of Preventive Veterinary Medicine, Austral University of Chile, Valdivia 5090000, Chile;
| | - Mauricio Soto-Gamboa
- Institute of Environmental and Evolutionary Sciences, Austral University of Chile, Valdivia 5090000, Chile;
| | | | - Gerardo Acosta-Jamett
- Institute of Preventive Veterinary Medicine, Austral University of Chile, Valdivia 5090000, Chile;
- Center for Surveillance and Evolution of Infectious Diseases (CSEID), Austral University of Chile, Valdivia 5090000, Chile
| |
Collapse
|
3
|
Keogh MJ, Thompson DP, Crouse JA. Tracking reproductive events: Hoof growth and steroid hormone concentrations in hair and hoof tissues in moose ( Alces alces). CONSERVATION PHYSIOLOGY 2023; 11:coad097. [PMID: 38107464 PMCID: PMC10722880 DOI: 10.1093/conphys/coad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Measurements of reproductive and stress-related hormones in keratinous tissues (e.g. hair, claws, hooves, baleen) can provide a record of stress and reproductive response in wildlife. We evaluated a method to collect keratin tissue from hooves of immobilized moose (Alces alces) and validated enzyme immunoassays for measuring cortisol and progesterone in hooves and hair. We also measured the annual growth and wear rates of moose hooves. Progesterone (range: 1.0-43.7 pg/mg) and cortisol (range: 0.05-2.9 pg/mg) were measurable and showed variation among hoof samples and moose. Pregnant females had twice as high progesterone concentrations (18.00 ± 3.73 pg/mg) from hoof sample locations post breeding compared to non-pregnant moose (9.40 ± 0.25 pg/mg). Annual hoof growth differed between the front (5.58 ± 0.12 cm) and rear (4.73 ± 0.13 cm) hooves and varied by season with higher growth rates during summer which decreased into autumn and winter. Adult female hooves represented between 1.6 and 2.1 years of growth and included up to two reproductive cycles. We established a method to estimate hoof growth rate and applied this to postmortem samples and were able to detect previous pregnancies. Shoulder guard hairs grew between August and March including during late gestation; however, hair progesterone concentrations (range: 2-107.1 pg/mg) were not related to reproductive state. Hair cortisol concentrations in our study (range: 0.2-15.9 pg/mg) were within the range of values previously reported for cervids. Our study supports the use of hooves for longitudinal sampling and measuring reproductive and stress-related hormones, providing a new tool for tracking reproductive events and understanding what variables may contribute to population level changes in reproduction.
Collapse
Affiliation(s)
- Mandy J Keogh
- Division of Wildlife Conservation, Alaska Department of Fish and Game, 802 3rd St, Douglas, AK 99801, USA
| | - Daniel P Thompson
- Kenai Moose Research Center, Alaska Department of Fish and Game, 43961 Kalifornsky Beach Road Suite B, Soldotna, AK 99669, USA
| | - John A Crouse
- Kenai Moose Research Center, Alaska Department of Fish and Game, 43961 Kalifornsky Beach Road Suite B, Soldotna, AK 99669, USA
| |
Collapse
|
4
|
Robertson KE, Ellington EH, Tonra CM, Gehrt SD. Stress in the city? Coyote hair cortisol varies with intrinsic and extrinsic factors within a heavily urbanized landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165965. [PMID: 37543341 DOI: 10.1016/j.scitotenv.2023.165965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Wildlife living in proximity to people are exposed to both natural and anthropogenic factors that may influence cortisol production associated with stress response. While some species, including coyotes (Canis latrans), have become commonplace in developed areas throughout North America, urban individuals still must navigate ever-changing, novel environments and cope with frequent disturbance. Given that coyotes are relatively large predators compared to most other urban wildlife, they face unique pressures such as crossing roadways to use suitable habitat fragments and are at a greater risk of being detected and experiencing negative human interactions. To assess whether urbanization influences hypothalamic-pituitary-adrenal axis activity in free-ranging coyotes, we analyzed cortisol concentration in hair samples from 97 coyotes residing across the urbanization gradient within the Greater Chicago Metropolitan area. As the proportion of developed landcover within coyote home ranges increased, coyotes experienced more stress. Body condition and social status also had strong relationships with stress. Animals in poorer body condition experienced more stress and subordinate coyotes experienced less stress than alphas. We also found some evidence that stress varied seasonally and among different age classes. Understanding how intrinsic and extrinsic factors influence endocrine activity in urban carnivores is vital for predicting how hormone production and related behavioral patterns may change in future populations as more areas become developed.
Collapse
Affiliation(s)
- Katie E Robertson
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States of America
| | - E Hance Ellington
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States of America; Range Cattle Research and Education Center, University of Florida, 3401 Experiment Station Road, Ona, FL 33865, United States of America
| | - Christopher M Tonra
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States of America.
| | - Stanley D Gehrt
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States of America.
| |
Collapse
|
5
|
Rakic F, Fernandez-Aguilar X, Pruvot M, Whiteside DP, Mastromonaco GF, Leclerc LM, Jutha N, Kutz SJ. Variation of hair cortisol in two herds of migratory caribou ( Rangifer tarandus): implications for health monitoring. CONSERVATION PHYSIOLOGY 2023; 11:coad030. [PMID: 37228297 PMCID: PMC10203588 DOI: 10.1093/conphys/coad030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/03/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Migratory caribou (Rangifer tarandus sspp.) is an ecotype of conservation concern that is experiencing increased cumulative stressors associated with rapid climate change and development in Arctic Canada. Increasingly, hair cortisol concentrations (HCCs) are being used to monitor seasonal hypothalamic-pituitary-adrenal axis activity of ungulate populations; yet, the effect of key covariates for caribou (sex, season, sampling source, body location) are largely unknown. The objectives of this research were 4-fold: first, we assessed the impact of body location (neck, rump) sampling sites on HCC; second, we assessed key covariates (sex, sampling method, season) impacting HCCs of caribou; third, we investigated inter-population (Dolphin and Union (DU), Bluenose-East (BNE)) and inter-annual differences in HCC and fourth, we examined the association between HCCs and indices of biting insect activity on the summer range (oestrid index, mosquito index). We examined hair from 407 DU and BNE caribou sampled by harvesters or during capture-collaring operations from 2012 to 2020. Linear mixed-effect models were used to assess the effect of body location on HCC and generalized least squares regression (GLS) models were used to examine the impacts of key covariates, year and herd and indices of biting insect harassment. HCC varied significantly by body location, year, herd and source of samples (harvester vs capture). HCC was higher in samples taken from the neck and in the DU herd compared with the BNE, decreased linearly over time and was higher in captured versus hunted animals (P < 0.05). There was no difference in HCC between sexes, and indices of biting insect harassment in the previous year were not significantly associated with HCC. This study identifies essential covariates impacting the HCC of caribou that must be accounted for in sampling, monitoring and data interpretation.
Collapse
Affiliation(s)
- F Rakic
- Corresponding author: Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta T2N 4Z6, Canada.
| | - X Fernandez-Aguilar
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - M Pruvot
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - D P Whiteside
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - G F Mastromonaco
- Reproductive Sciences Unit, Toronto Zoo, 361A Old Finch Avenue, Scarborough, Ontario, Canada, M1B 5K7
| | - L M Leclerc
- Department of Environment, Government of Nunavut, P.O. Box 377, Kugluktuk, Nunavut, Canada, X0B 0E0
| | - N Jutha
- Department of Environment and Natural Resources, Government of the Northwest Territories, 5112 52 st, Yellowknife, The Northwest Territories, Canada, X1A 2L9
| | - S J Kutz
- Department of Ecosystem and Public Health – Faculty of Veterinary Medicine, University of Calgary; 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| |
Collapse
|
6
|
Karaer MC, Čebulj-Kadunc N, Snoj T. Stress in wildlife: comparison of the stress response among domestic, captive, and free-ranging animals. Front Vet Sci 2023; 10:1167016. [PMID: 37138925 PMCID: PMC10150102 DOI: 10.3389/fvets.2023.1167016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
The stress response, which involves joint activity of the nervous and endocrine systems, is one of the basic adaptive mechanisms that ensures the survival of the individual. The activation of the sympathetic nervous system, the sympathetic-adrenal-medullary axis, and the hypothalamic-pituitary-adrenal axis enables organisms to respond to endogenous and exogenous challenges. Repeated short-term stress leads to long-term stress, which disrupts physiological homeostasis. Unlike domestic animals, wild animals are not protected from environmental and weather influences or treated for diseases. In addition, climate change, habitat fragmentation and loss, and urban stressors (such as light, noise and chemical pollution; xenobiotics; traffic; and buildings) affect individual wildlife and populations. In this review, we have attempted to depict the magnitude of the stress response in wildlife and related domestic animals as well as in captive and free-ranging animals. The intensity of the stress response can be estimated by determining the concentration of glucocorticoids in body fluids, tissues, and excreta. A comparison of results from different studies suggests that domestic animals have lower fecal and hair glucocorticoid concentrations than related wild animals. Additionally, fecal and hair glucocorticoid concentrations in captive animals are higher than in free-ranging animals of the same species. As there are limited data on this topic, we cannot draw definitive conclusions about glucocorticoid concentration and stress response. Further studies are needed to clarify these issues.
Collapse
Affiliation(s)
- Mina Cansu Karaer
- Food and Agriculture Vocational School, Çankiri Karatekin University, Çankiri, Türkiye
| | - Nina Čebulj-Kadunc
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| | - Tomaž Snoj
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
- *Correspondence: Tomaž Snoj
| |
Collapse
|