1
|
Aali M, Esmaeili A, Ebrahimi H, Azami A, Kavoosi A, Davoodabadi Farahani S. Enhancing capture efficiency of drug-carrier particles in the carotid sinus by utilizing a combination of magnetic fields: A numerical approach. Heliyon 2024; 10:e36930. [PMID: 39281634 PMCID: PMC11401194 DOI: 10.1016/j.heliyon.2024.e36930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Magnetic drug targeting is a relatively new method to treat vascular occlusion in different body parts. However, the effectiveness of this method can be affected due to the severity and location of the occlusion. This can lead to the injection of high dosages of drugs, which can cause serious side effects due to the deposition of drugs in unwanted parts. To mitigate these effects, this study investigates the potential of a guiding magnetic field in enhancing drug absorption for vascular occlusion treatment. The method relies on guiding magnetic nanoparticles (NPs) loaded with drugs toward the occlusion site using two external magnetic fields. Blood flow was modeled as non-Newtonian, considering shear-rate-dependent viscosity and unsteady at the inlet. To test this idea, a computational fluid dynamic (CFD) coupled with a discrete phase model (DPM) approach has been employed to simulate drug delivery in three-vessel structures with varying degrees of occlusion (45 %, 60 %, and 90 %). To avoid the escape of drug carriers, a secondary magnetic field was applied at the bifurcation point to direct the NPs to the site of blockage where the primary magnetic field acts. Then, the states with or without a guiding source at the bifurcation site are compared based on the capture efficiency of each structure. The simulation demonstrated a significant increase in NP capture at the target site, ranging from 2 % to 15 %, depending on the NP size. However, the severity of occlusion substantially impacted the secondary magnetic field's effectiveness. In the 90 % occlusion scenario, the method's efficiency decreased significantly from 26 % to 16 % for NP sizes exceeding 1.5μm. This study highlights the potential of guiding magnetic fields in improving drug delivery to target sites in vascular occlusion.
Collapse
Affiliation(s)
- Mahdi Aali
- Faculty of Engineering, Islamic Azad University, Central Tehran Branch, 1955847781, Tehran, Iran
| | - Adel Esmaeili
- Faculty of Engineering, Arak University, 38156879, Arak, Iran
| | - Hadi Ebrahimi
- Faculty of Mechanical Engineering, Islamic Azad University Khomeinishahr Branch, 8418148499, Isfahan, Iran
| | - Artin Azami
- Department of Mechanical Engineering, University of Kurdistan, 416, Sanandaj, Iran
| | - Amir Kavoosi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, 19697 64499, Tehran, Iran
| | | |
Collapse
|
2
|
Göhler D, Oelschlägel K, Ouaissi M, Giger-Pabst U. Performance of different nebulizers in clinical use for Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC). PLoS One 2024; 19:e0300241. [PMID: 38696384 PMCID: PMC11065249 DOI: 10.1371/journal.pone.0300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024] Open
Abstract
OBJECTIVE Technical ex-vivo comparison of commercial nebulizer nozzles used for Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC). METHODS The performance of four different commercial nebulizer nozzles (Nebulizer; HurriChemTM; MCR-4 TOPOL®; QuattroJet) was analysed concerning: i) technical design and principle of operation, ii) operational pressure as function of the liquid flow rate, iii) droplet size distribution via laser diffraction spectrometry, iv) spray cone angle, spray cone form as well as horizontal drug deposition by image-metric analyses and v) chemical resistance via exposing to a cytostatic solution and chemical composition by means of spark optical emission spectral analysis. RESULTS The Nebulizer shows quasi an identical technical design and thus also a similar performance (e.g., mass median droplet size of 29 μm) as the original PIPAC nozzles (MIP/ CapnoPen). All other nozzles show more or less a performance deviation to the original PIPAC nozzles. The HurriChemTM has a similar design and principle of operation as the Nebulizer, but provides a finer aerosol (22 μm). The principle of operation of MCR-4 TOPOL® and QuattroJet differ significantly from that of the original PIPAC nozzle technology. The MCR-4 TOPOL® offers a hollow spray cone with significantly larger droplets (50 μm) than the original PIPAC nozzles. The QuattroJet generates an aerosol (22 μm) similar to that of the HurriChemTM but with improved spatial drug distribution. CONCLUSION The availability of new PIPAC nozzles is encouraging but can also have a negative impact if their performance and efficacy is unknown. It is recommended that PIPAC nozzles that deviate from the current standard should be subject to bioequivalence testing and implementation in accordance with the IDEAL-D framework prior to routine clinical use.
Collapse
Affiliation(s)
- Daniel Göhler
- Topas GmbH, Dresden, Germany
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Dresden, Germany
| | | | - Mehdi Ouaissi
- EA4245 Transplantation, Immunology, Inflammation, Université de Tours, Tours, France
- Department of Digestive, Oncological, Endocrine, Hepato-Biliary, Pancreatic and Liver Transplant Surgery, University Hospital of Tours, Tours, France
| | - Urs Giger-Pabst
- EA4245 Transplantation, Immunology, Inflammation, Université de Tours, Tours, France
- Fliedner Fachhochschule, University of Applied Sciences Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Breusa S, Zilio S, Catania G, Bakrin N, Kryza D, Lollo G. Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1125868. [PMID: 37287910 PMCID: PMC10242058 DOI: 10.3389/fonc.2023.1125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Peritoneal carcinomatosis (PC) is a common outcome of epithelial ovarian carcinoma and is the leading cause of death for these patients. Tumor location, extent, peculiarities of the microenvironment, and the development of drug resistance are the main challenges that need to be addressed to improve therapeutic outcome. The development of new procedures such as HIPEC (Hyperthermic Intraperitoneal Chemotherapy) and PIPAC (Pressurized Intraperitoneal Aerosol Chemotherapy) have enabled locoregional delivery of chemotherapeutics, while the increasingly efficient design and development of advanced drug delivery micro and nanosystems are helping to promote tumor targeting and penetration and to reduce the side effects associated with systemic chemotherapy administration. The possibility of combining drug-loaded carriers with delivery via HIPEC and PIPAC represents a powerful tool to improve treatment efficacy, and this possibility has recently begun to be explored. This review will discuss the latest advances in the treatment of PC derived from ovarian cancer, with a focus on the potential of PIPAC and nanoparticles in terms of their application to develop new therapeutic strategies and future prospects.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, Institut national de santé et de la recherche médicale (INSERM) U1052-Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Sociétés d'Accélération du Transfert de Technologies (SATT) Ouest Valorisation, Rennes, France
| | - Giuseppina Catania
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
- Centre pour l'Innovation en Cancérologie de Lyon (CICLY), Claude Bernard University Lyon 1, Lyon, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Imthernat Plateform, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| |
Collapse
|
4
|
Motlana MK, Ngoepe MN. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7886. [PMID: 37175591 PMCID: PMC10178063 DOI: 10.3390/ijms24097886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by an attack on healthy cells in the joints. Blood flow and wall shear stress are crucial in angiogenesis, contributing to RA's pathogenesis. Vascular endothelial growth factor (VEGF) regulates angiogenesis, and shear stress is a surrogate for VEGF in this study. Our objective was to determine how shear stress correlates with the location of new blood vessels and RA progression. To this end, two models were developed using computational fluid dynamics (CFD). The first model added new blood vessels based on shear stress thresholds, while the second model examined the entire blood vessel network. All the geometries were based on a micrograph of RA blood vessels. New blood vessel branches formed in low shear regions (0.840-1.260 Pa). This wall-shear-stress overlap region at the junctions was evident in all the models. The results were verified quantitatively and qualitatively. Our findings point to a relationship between the development of new blood vessels in RA, the magnitude of wall shear stress and the expression of VEGF.
Collapse
Affiliation(s)
- Malaika K. Motlana
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
5
|
A computational approach to understand the breathing dynamics and pharmaceutical aerosol transport in a realistic airways. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Design Parameters on Impingement Steam Jet Heat Transfer of Continuous Liquid Food Sterilization. FLUIDS 2022. [DOI: 10.3390/fluids7060185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect was clarified of the design parameters on the heat transfer of an impingement steam jet applied to continuous liquid food sterilization with the aim of high heating performance. The study investigated the effects of the steam and water Reynolds number, jet-to-target spacing to jet diameter ratio, and steam temperature on the Nusselt number. The Reynolds number was defined based on steam and water injection plate configurations in turbulent flow. The Nusselt number of the steam temperature at 120 °C was greater than at 125 °C and 130 °C and higher heat transfer was noted at a water nozzle number of two. The Nusselt number was the highest at the jet-to-target spacing to jet diameter ratio (H/d) of 1 and then tended to be constant for H/d above 3. The present study was compared with jet impingement correlations from Huber and Viskanta, and from Martin. In addition, the Ranz and Marshall correlation of a conventional direct steam injection was compared with the impingement method. The sterilization temperature tended to increase as the steam temperature and the number of steam nozzles was increased while the number of product nozzles was decreased.
Collapse
|