1
|
da Silva SM, Amaral C, Malta-Luís C, Grilo D, Duarte AG, Morais I, Afonso G, Faria N, Antunes W, Gomes I, Sá-Leão R, Miragaia M, Serrano M, Pimentel C. A one-step low-cost molecular test for SARS-CoV-2 detection suitable for community testing using minimally processed saliva. Biol Methods Protoc 2024; 9:bpae035. [PMID: 38835855 PMCID: PMC11147803 DOI: 10.1093/biomethods/bpae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
The gold standard for coronavirus disease 2019 diagnostic testing relies on RNA extraction from naso/oropharyngeal swab followed by amplification through reverse transcription-polymerase chain reaction (RT-PCR) with fluorogenic probes. While the test is extremely sensitive and specific, its high cost and the potential discomfort associated with specimen collection made it suboptimal for public health screening purposes. In this study, we developed an equally reliable, but cheaper and less invasive alternative test based on a one-step RT-PCR with the DNA-intercalating dye SYBR Green, which enables the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly from saliva samples or RNA isolated from nasopharyngeal (NP) swabs. Importantly, we found that this type of testing can be fine-tuned to discriminate SARS-CoV-2 variants of concern. The saliva RT-PCR SYBR Green test was successfully used in a mass-screening initiative targeting nearly 4500 asymptomatic children under the age of 12. Testing was performed at a reasonable cost, and in some cases, the saliva test outperformed NP rapid antigen tests in identifying infected children. Whole genome sequencing revealed that the antigen testing failure could not be attributed to a specific lineage of SARS-CoV-2. Overall, this work strongly supports the view that RT-PCR saliva tests based on DNA-intercalating dyes represent a powerful strategy for community screening of SARS-CoV-2. The tests can be easily applied to other infectious agents and, therefore, constitute a powerful resource for an effective response to future pandemics.
Collapse
Affiliation(s)
- Sofia M da Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Cláudia Malta-Luís
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Diana Grilo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Inês Morais
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Gonçalo Afonso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Nuno Faria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Wilson Antunes
- Centro de Investigação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Av. Dr Alfredo Bensaúde, Lisboa, 1849-012, Portugal
| | - Inês Gomes
- Centro de Investigação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Av. Dr Alfredo Bensaúde, Lisboa, 1849-012, Portugal
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Maria Miragaia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| |
Collapse
|
2
|
Brukner I, Paliouras M, Trifiro M, Bohbot M, Shamir D, Kirk AG. Assessing Different PCR Master Mixes for Ultrarapid DNA Amplification: Important Analytical Parameters. Diagnostics (Basel) 2024; 14:477. [PMID: 38472949 DOI: 10.3390/diagnostics14050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The basic principles of ultrafast plasmonic PCR have been promulgated in the scientific and technological literature for over a decade. Yet, its everyday diagnostic utility remains unvalidated in pre-clinical and clinical settings. Although the impressive speed of plasmonic PCR reaction is well-documented, implementing this process into a device form compatible with routine diagnostic tasks has been challenging. Here, we show that combining careful system engineering and process control with innovative and specific PCR biochemistry makes it possible to routinely achieve a sensitive and robust "10 min" PCR assay in a compact and lightweight system. The critical analytical parameters of PCR reactions are discussed in the current instrument setting.
Collapse
Affiliation(s)
- Ivan Brukner
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | | | - Mark Trifiro
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Marc Bohbot
- Nexless Healthcare, 1315 Chem. Canora, Mont-Royal, Montreal, QC H3P 2J5, Canada
| | - Daniel Shamir
- Nexless Healthcare, 1315 Chem. Canora, Mont-Royal, Montreal, QC H3P 2J5, Canada
| | - Andrew G Kirk
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| |
Collapse
|
3
|
Evaluation of RT-PCR assays for detection of SARS-CoV-2 variants of concern. Sci Rep 2023; 13:2342. [PMID: 36759632 PMCID: PMC9910272 DOI: 10.1038/s41598-023-28275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic has been considered with great importance on correct screening procedure. The detection efficiency of recent variants of concern were observed by comparing 5 commercial RT-PCR kits and a SYBR-green method developed and validated in our laboratory. The RNA was extracted from nasopharyngeal samples from suspected COVID-19 patients and RT-PCR assay was performed according to the instruction of the respective manufacturers. The specificity and sensitivity of Maccura kit was 81.8% and 82.5%, A*Star kit was 100% and 75.4%, Da An Gene kit was 100% and 68.4%, Sansure kit was 54.5% and 91.2% and TaqPath kit was 100% and 70.2% respectively. Our in house SYBR-Green method showed a consistent detection result with 90.9% specificity and 91.2% sensitivity. We also found that detection kits targeting more genes showed better accuracy which facilitates less false positive results (< 20%). Our study found a significant difference (p < 0.005) in Ct value reported for common target genes shared by the RT-PCR kits in relation with different variants of COVID-19 infection. Recent variants of concerns contain more than 30 mutations in the spike proteins including 2 deletion and a unique insertion mutation by which makes detection of these variants difficult and these facilitates the variants to escape from being detected.
Collapse
|
4
|
Identification of mutations in SARS-CoV-2 PCR primer regions. Sci Rep 2022; 12:18651. [PMID: 36333366 PMCID: PMC9636223 DOI: 10.1038/s41598-022-21953-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Due to the constantly increasing number of mutations in the SARS-CoV-2 genome, concerns have emerged over the possibility of decreased diagnostic accuracy of reverse transcription-polymerase chain reaction (RT-PCR), the gold standard diagnostic test for SARS-CoV-2. We propose an analysis pipeline to discover genomic variations overlapping the target regions of commonly used PCR primer sets. We provide the list of these mutations in a publicly available format based on a dataset of more than 1.2 million SARS-CoV-2 samples. Our approach distinguishes among mutations possibly having a damaging impact on PCR efficiency and ones anticipated to be neutral in this sense. Samples are categorized as "prone to misclassification" vs. "likely to be correctly detected" by a given PCR primer set based on the estimated effect of mutations present. Samples susceptible to misclassification are generally present at a daily rate of 2% or lower, although particular primer sets seem to have compromised performance when detecting Omicron samples. As different variant strains may temporarily gain dominance in the worldwide SARS-CoV-2 viral population, the efficiency of a particular PCR primer set may change over time, therefore constant monitoring of variations in primer target regions is highly recommended.
Collapse
|