1
|
Kellermeier M, Scheck J, Drechsler M, Rosenberg R, Stawski TM, Fernandez‐Martinez A, Gebauer D, Van Driessche AES. From Ions to Crystals: A Comprehensive View of the Non-Classical Nucleation of Calcium Sulfate. Angew Chem Int Ed Engl 2024; 63:e202408429. [PMID: 39373012 PMCID: PMC11627134 DOI: 10.1002/anie.202408429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
The early stages of mineralization continue to be in the focus of intensive research due to their inherent importance for natural and engineered environments. While numerous observations have been reported for single steps in the pathways of various crystallizing phases in previous studies, the complexity of the underlying processes and their elusive character have left central questions unanswered in most cases. In the present work, we provide a detailed view on the nucleation of calcium sulfate mineralization-an abundant mineral with broad use in construction industry-in aqueous systems at ambient conditions. As experimental basis, a co-titration procedure with potentiometric, turbidimetric and conductometric detection was developed, allowing solution speciation and the formation of crystallization precursors to be monitored quantitatively as the level of nominal (super)saturation gradually increases. The nature and spatiotemporal evolution of these precursors was further elucidated by time-resolved small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC) experiments, complemented by cryogenic transmission electron microscopy (cryo-TEM) as a direct imaging technique. The results reveal how ions associate into nanometric primary species, which subsequently aggregate and develop anisotropic order by intrinsic structural reorganization. Our observations challenge the common understanding of fundamental notions such as the nucleation barrier or the meaning of supersaturation, with broad implications for mineralization phenomena in general and the formation of calcium sulfate in geochemical settings and industrial applications in particular.
Collapse
Affiliation(s)
| | - Johanna Scheck
- Physical ChemistryUniversity of KonstanzUniversitätsstraße 10D-78464KonstanzGermany
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI)Keylab “Electron and Optical Microscopy”University of BayreuthUniversitätsstraße 30D-95440BayreuthGermany
| | - Rose Rosenberg
- Physical ChemistryUniversity of KonstanzUniversitätsstraße 10D-78464KonstanzGermany
| | - Tomasz M. Stawski
- Materials ChemistryFederal Institute for Materials and Testing (BAM)Richard-Willstätter-Straße 11D-12489BerlinGermany
| | - Alejandro Fernandez‐Martinez
- ISTerreUniversité Grenoble AlpesUniversité Savoie Mont BlancCNRSIRDIFSTTAR1381 Rue de la PiscineF-38000GrenobleFrance
| | - Denis Gebauer
- Institute of Inorganic ChemistryLeibniz University HannoverCallinstraße 9D-30167HannoverDeutschland
| | | |
Collapse
|
2
|
Jin B, Chen Y, Pyles H, Baer MD, Legg BA, Wang Z, Washton NM, Mueller KT, Baker D, Schenter GK, Mundy CJ, De Yoreo JJ. Formation, chemical evolution and solidification of the dense liquid phase of calcium (bi)carbonate. NATURE MATERIALS 2024:10.1038/s41563-024-02025-5. [PMID: 39448841 DOI: 10.1038/s41563-024-02025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Metal carbonates, which are ubiquitous in the near-surface mineral record, are a major product of biomineralizing organisms and serve as important targets for capturing anthropogenic CO2 emissions. However, pathways of carbonate mineralization typically diverge from classical predictions due to the involvement of disordered precursors, such as the dense liquid phase (DLP), yet little is known about DLP formation or solidification processes. Using in situ methods we report that a highly hydrated bicarbonate DLP forms via liquid-liquid phase separation and transforms into hollow hydrated amorphous CaCO3 particles. Acidic proteins and polymers extend DLP lifetimes while leaving the pathway and chemistry unchanged. Molecular simulations suggest that the DLP forms via direct condensation of solvated Ca²+⋅(HCO3-)2 complexes that react due to proximity effects in the confined DLP droplets. Our findings provide insight into CaCO3 nucleation that is mediated by liquid-liquid phase separation, advancing the ability to direct carbonate mineralization and elucidating an often-proposed complex pathway of biomineralization.
Collapse
Affiliation(s)
- Biao Jin
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
- School of Sustainable Energy and Resources, Nanjing University, Suzhou, People's Republic of China
| | - Ying Chen
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Marcel D Baer
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Benjamin A Legg
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zheming Wang
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nancy M Washton
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl T Mueller
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Gregory K Schenter
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Christopher J Mundy
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| | - James J De Yoreo
- Physical and Computational Sciences, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Liu H, Wen Z, Liu Z, Yang Y, Wang H, Xia X, Ye J, Liu Y. Unlocking the potential of amorphous calcium carbonate: A star ascending in the realm of biomedical application. Acta Pharm Sin B 2024; 14:602-622. [PMID: 38322345 PMCID: PMC10840486 DOI: 10.1016/j.apsb.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 02/08/2024] Open
Abstract
Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhiyang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Nicholas TC, Stones AE, Patel A, Michel FM, Reeder RJ, Aarts DGAL, Deringer VL, Goodwin AL. Geometrically frustrated interactions drive structural complexity in amorphous calcium carbonate. Nat Chem 2024; 16:36-41. [PMID: 37749235 PMCID: PMC10774122 DOI: 10.1038/s41557-023-01339-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023]
Abstract
Amorphous calcium carbonate is an important precursor for biomineralization in marine organisms. Key outstanding problems include understanding the structure of amorphous calcium carbonate and rationalizing its metastability as an amorphous phase. Here we report high-quality atomistic models of amorphous calcium carbonate generated using state-of-the-art interatomic potentials to help guide fits to X-ray total scattering data. Exploiting a recently developed inversion approach, we extract from these models the effective Ca⋯Ca interaction potential governing the structure. This potential contains minima at two competing distances, corresponding to the two different ways that carbonate ions bridge Ca2+-ion pairs. We reveal an unexpected mapping to the Lennard-Jones-Gauss model normally studied in the context of computational soft matter. The empirical model parameters for amorphous calcium carbonate take values known to promote structural complexity. We thus show that both the complex structure and its resilience to crystallization are actually encoded in the geometrically frustrated effective interactions between Ca2+ ions.
Collapse
Affiliation(s)
- Thomas C Nicholas
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Adam Edward Stones
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Adam Patel
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - F Marc Michel
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - Richard J Reeder
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Dirk G A L Aarts
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Volker L Deringer
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Andrew L Goodwin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Hess KU, Schawe JEK, Wilding M, Purgstaller B, Goetschl KE, Sturm S, Müller-Caspary K, Sturm EV, Schmahl W, Griesshaber E, Bissbort T, Weidendorfer D, Dietzel M, Dingwell DB. Glass transition temperatures and crystallization kinetics of a synthetic, anhydrous, amorphous calcium-magnesium carbonate. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220356. [PMID: 37634535 PMCID: PMC10460641 DOI: 10.1098/rsta.2022.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
We report the first calorimetric observations of glass transition temperatures and crystallization rates of anhydrous, amorphous calcium-magnesium carbonate using fast scanning differential scanning calorimetry. Hydrous amorphous Ca0.95Mg0.05CO3 · 0.5H2O (ACMC) solid was precipitated from a MgCl2-NaHCO3 buffered solution, separated from the supernatant, and freeze-dried. An aliquot of the freeze-dried samples was additionally dried at 250°C for up to 6 h in a furnace and in a high-purity N2 atmosphere to produce anhydrous ACMC. The glass transition temperature of the anhydrous Ca0.95Mg0.05CO3 was determined by applying different heating rates (1000-6000 K s-1) and correcting for thermal lag to be 376°C and the relaxational heat capacity was determined to be Cp = 0.16 J/(g K). Additionally, the heating rate dependence of the temperature that is associated with the corrected crystallization peaks is used to determine the activation energy of crystallization to be 275 kJ mol-1. A high-resolution transmission electron microscopy study on the hydrous and anhydrous samples provided further constraints on their compositional and structural states. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
Collapse
Affiliation(s)
- Kai-Uwe Hess
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Jürgen E. K. Schawe
- Mettler-Toledo GmbH, Heuwinkelstrasse 3, 8603, Nänikon, Switzerland
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Wilding
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire OX11 0FA, UK
| | - Bettina Purgstaller
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, 8010 Graz, Austria
| | - Katja E. Goetschl
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, 8010 Graz, Austria
| | - Sebastian Sturm
- Fakultät für Chemie und Pharmazie, Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandstr. 5-13, 81377, München, Germany
| | - Knut Müller-Caspary
- Fakultät für Chemie und Pharmazie, Physikalische Chemie, Ludwig-Maximilians-Universität München, Butenandstr. 5-13, 81377, München, Germany
| | - Elena V. Sturm
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Wolfgang Schmahl
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Erika Griesshaber
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Thilo Bissbort
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Daniel Weidendorfer
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| | - Martin Dietzel
- Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, 8010 Graz, Austria
| | - Donald B. Dingwell
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41/III, 80333 München, Germany
| |
Collapse
|
6
|
Weidendorfer D, Hess KU, Ruhekenya RM, Schawe JEK, Wilding MC, Dingwell DB. Effect of water on the glass transition of a potassium-magnesium carbonate melt. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220355. [PMID: 37634532 PMCID: PMC10460640 DOI: 10.1098/rsta.2022.0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 08/29/2023]
Abstract
Calorimetric measurements of the glass transition temperatures (Tg) of hydrous carbonate melts are reported on a near-eutectic composition of 55 mol% K2CO3 - 45 mol% MgCO3 with up to 42 mol% bulk H2O dissolved in the carbonate melt. Hydrous melts were quenched from 750°C to transparent and crystal-free glasses and were subsequently analysed for water content before and after measuring Tg by high-sensitivity differential scanning calorimetry. The glass transition and limited fictive temperatures as a function of the water content were determined at 10 K/min cooling/heating rates resulting in Tg ranging from 245°C at nominally anhydrous conditions to 83°C in the presence of 42 mol% H2O in the glass. Through a generalized Gordon-Taylor analysis, the factors k (7.27), k0 (3.2) and the interaction parameter Ax (0.49) were derived. The limited fictive temperature of a hypothetically, zero water containing 55 mol% K2CO3 - 45 mol% MgCO3 glass is 232 ± 5°C (505 K). The high value of the interaction parameter A indicates strong specific molecular interactions between water and the carbonates in the glassy state and a large decrease in the excess enthalpy of mixing during the conversion of the glassy into the liquid state at the glass transition. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.
Collapse
Affiliation(s)
- Daniel Weidendorfer
- Department of Earth and Environmental Sciences, LMU Munich, Theresienstrasse 41, 80333 Munich, Germany
| | - Kai-Uwe Hess
- Department of Earth and Environmental Sciences, LMU Munich, Theresienstrasse 41, 80333 Munich, Germany
| | - Ruben M. Ruhekenya
- Department of Earth and Environmental Sciences, LMU Munich, Theresienstrasse 41, 80333 Munich, Germany
| | - Jürgen E. K. Schawe
- Analytical, Mettler-Toledo GmbH, Heuwinkelstrasse 3,8603 Nänikon, Switzerland
- Department of Materials, Laboratory of Metal Physics and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin C. Wilding
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appelton Laboratory, Harwell Campus, Harwell OX11 0DE, UK
| | - Donald B. Dingwell
- Department of Earth and Environmental Sciences, LMU Munich, Theresienstrasse 41, 80333 Munich, Germany
| |
Collapse
|
7
|
Mahadevan G, Brahma RK, Kini RM, Valiyaveettil S. Purification of Intramineral Peptides from Cuttlebones and In Vitro Activity in CaCO 3 Biomineralization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7249-7257. [PMID: 37201193 DOI: 10.1021/acs.langmuir.2c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Living organisms develop functional hard structures such as teeth, bones, and shells from calcium salts through mineralization for managing vital functions to sustain life. However, the exact mechanism or role of biomolecules such as proteins and peptides in the biomineralization process to form defect-free hierarchical structures in nature is poorly understood. In this study, we have extracted, purified, and characterized five major peptides (CBP1-CBP5) from the soluble organic materials (SOMs) of cuttlefish bone (CB) and used for the in vitro mineralization of calcium carbonate crystals. The SOMs induced nucleation of the calcite phase at low concentrations and the vaterite phase at high concentrations. The purified peptides nucleated calcite crystals and enhanced aggregation under laboratory conditions. Among five peptides, only CBP2 and CBP3 showed concentration-dependent nucleation, aggregation, and morphological changes of the calcite crystals within 12 h. Circular dichroism studies showed that the peptides CBP2 and CBP3 are in alpha helix and β-sheet conformation, respectively, in solution. CBP1 and CBP4 and CBP5 are in random coil and β-sheet conformation, respectively. In addition, the peptides showed different sizes in solution in the absence (∼27 nm, low aggregation) and presence (∼118 nm, high aggregation) of calcium ions. Aragonite crystals with needle-type morphologies were nucleated in the presence of Mg2+ ions in solution. Overall, exploring the activities of such intramineral peptides from CB help to unravel the mechanism of calcium salt deposition in nature.
Collapse
Affiliation(s)
- Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Rajeev Kungur Brahma
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, 14 science drive 4, National University of Singapore, Singapore 117543, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
8
|
Otter LM, Eder K, Kilburn MR, Yang L, O'Reilly P, Nowak DB, Cairney JM, Jacob DE. Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre. Nat Commun 2023; 14:2254. [PMID: 37080977 PMCID: PMC10119311 DOI: 10.1038/s41467-023-37814-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Biominerals, such as nacreous bivalve shells, are important archives of environmental information. Most marine calcifiers form their shells from amorphous calcium carbonate, hypothesised to occur via particle attachment and stepwise crystallisation of metastable precursor phases. However, the mechanism of this transformation, including the incorporation of trace elements used for environmental reconstructions, are poorly constrained. Here, using shells of the Mediterranean mussel, we explore the formation of nacre from the meso- to the atomic scale. We use a combination of strontium pulse-chase labelling experiments in aquaculture and correlated micro- to sub-nanoscale analysis to show that nacre grows in a dynamic two-step process with extensional and space-filling growth components. Furthermore, we show that nacre crystallizes via localised dissolution and reprecipitation within nanogranules. Our findings elucidate how stepwise crystallization pathways affect trace element incorporation in natural biominerals, while preserving their intricate hierarchical ultrastructure.
Collapse
Affiliation(s)
- L M Otter
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia.
| | - K Eder
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M R Kilburn
- Centre for Microscopy Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - L Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - P O'Reilly
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - D B Nowak
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - J M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - D E Jacob
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
9
|
Prange MP, Mergelsberg ST, Kerisit SN. Structural water in amorphous carbonate minerals: ab initio molecular dynamics simulations of X-ray pair distribution experiments. Phys Chem Chem Phys 2023; 25:6768-6779. [PMID: 36789518 DOI: 10.1039/d2cp04881g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Water is known to play a controlling role in directing mineralization pathways and stabilizing metastable amorphous intermediates in hydrous carbonate mineral MCO3·nH2O systems, where M2+ is a divalent metal cation. Despite this recognition, the nature of the controls on crystallization is poorly understood, largely owing to the difficulty in characterizing the dynamically disordered structures of amorphous intermediates at the atomic scale. Here, we present a series of atomistic models, derived from ab initio molecular dynamics simulation, across a range of experimentally relevant cations (M = Ca, Mg, Sr) and hydration levels (0 ≤ n ≤ 2). Theoretical simulations of the dependence of the X-ray pair distribution function on the hydration level n show good agreement with available experimental data and thus provide further evidence for a lack of significant nanoscale structure in amorphous carbonates. Upon dehydration, the metal coordination number does not change significantly, but the relative extent of water dissociation increases, indicating that a thermodynamic driving force exists for water dissociation to accompany dehydration. Mg strongly favors monodentate conformation of carbonate ligands and shows a marked preference to exchange monodentate carbonate O for water O upon hydration, whereas Ca and Sr exchange mono- and bidentate carbonate ligands with comparable frequency. Water forms an extensive hydrogen bond network among both water and carbonate groups that exhibits frequent proton transfers for all three cations considered suggesting that proton mobility is likely predominantly due to water dissociation and proton transfer reactions rather than molecular water diffusion.
Collapse
Affiliation(s)
- Micah P Prange
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Sebastian T Mergelsberg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Sebastien N Kerisit
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| |
Collapse
|
10
|
Wang S, Neufurth M, Schepler H, Tan R, She Z, Al-Nawas B, Wang X, Schröder HC, Müller WEG. Acceleration of Wound Healing through Amorphous Calcium Carbonate, Stabilized with High-Energy Polyphosphate. Pharmaceutics 2023; 15:pharmaceutics15020494. [PMID: 36839816 PMCID: PMC9961744 DOI: 10.3390/pharmaceutics15020494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Amorphous calcium carbonate (ACC), precipitated in the presence of inorganic polyphosphate (polyP), has shown promise as a material for bone regeneration due to its morphogenetic and metabolic energy (ATP)-delivering properties. The latter activity of the polyP-stabilized ACC ("ACC∙PP") particles is associated with the enzymatic degradation of polyP, resulting in the transformation of ACC into crystalline polymorphs. In a novel approach, stimulated by these results, it was examined whether "ACC∙PP" also promotes the healing of skin injuries, especially chronic wounds. In in vitro experiments, "ACC∙PP" significantly stimulated the migration of endothelial cells, both in tube formation and scratch assays (by 2- to 3-fold). Support came from ex vivo experiments showing increased cell outgrowth in human skin explants. The transformation of ACC into insoluble calcite was suppressed by protein/serum being present in wound fluid. The results were confirmed in vivo in studies on normal (C57BL/6) and diabetic (db/db) mice. Topical administration of "ACC∙PP" significantly accelerated the rate of re-epithelialization, particularly in delayed healing wounds in diabetic mice (day 7: 1.5-fold; and day 13: 1.9-fold), in parallel with increased formation/maturation of granulation tissue. The results suggest that administration of "ACC∙PP" opens a new strategy to improve ATP-dependent wound healing, particularly in chronic wounds.
Collapse
Affiliation(s)
- Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Zhending She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, D-55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
- Correspondence: (H.C.S.); (W.E.G.M.)
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
- Correspondence: (H.C.S.); (W.E.G.M.)
| |
Collapse
|
11
|
Clark SM, Grigorova V, Colas B, Darwish TA, Wood K, Neuefeind J, Jacob DE. The Kinetics of Aragonite Formation from Solution via Amorphous Calcium Carbonate. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234151. [PMID: 36500773 PMCID: PMC9739954 DOI: 10.3390/nano12234151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 05/05/2023]
Abstract
Magnesium doped Amorphous Calcium Carbonate was synthesised from precursor solutions containing varying amounts of calcium, magnesium, H2O and D2O. The Mg/Ca ratio in the resultant Amorphous Calcium Carbonate was found to vary linearly with the Mg/Ca ratio in the precursor solution. All samples crystallised as aragonite. No Mg was found in the final aragonite crystals. Changes in the Mg to Ca ratio were found to only marginally effect nucleation rates but strongly effect crystal growth rates. These results are consistent with a dissolution-reprecipitation model for aragonite formation via an Amorphous Calcium Carbonate intermediate.
Collapse
Affiliation(s)
- Simon M. Clark
- School of Engineering, Faculty of Science and Engineering, Macquarie University, North Macquarie Park, Shellharbour, NSW 2109, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232, Australia
- Correspondence:
| | - Vili Grigorova
- School of Engineering, Faculty of Science and Engineering, Macquarie University, North Macquarie Park, Shellharbour, NSW 2109, Australia
| | - Bruno Colas
- School of Engineering, Faculty of Science and Engineering, Macquarie University, North Macquarie Park, Shellharbour, NSW 2109, Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232, Australia
| | - Tamim A. Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, Sydney, NSW 2232, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232, Australia
| | - Joerg Neuefeind
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dorrit E. Jacob
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
12
|
Structure of an amorphous calcium carbonate phase involved in the formation of Pinctada margaritifera shells. Proc Natl Acad Sci U S A 2022; 119:e2212616119. [PMID: 36322756 PMCID: PMC9659418 DOI: 10.1073/pnas.2212616119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.
Collapse
|
13
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small-Molecular-Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022; 61:e202208475. [PMID: 35785466 PMCID: PMC9796263 DOI: 10.1002/anie.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Small-molecular-weight (MW) additives can strongly impact amorphous calcium carbonate (ACC), playing an elusive role in biogenic, geologic, and industrial calcification. Here, we present molecular mechanisms by which these additives regulate stability and composition of both CaCO3 solutions and solid ACC. Potent antiscalants inhibit ACC precipitation by interacting with prenucleation clusters (PNCs); they specifically trigger and integrate into PNCs or feed PNC growth actively. Only PNC-interacting additives are traceable in ACC, considerably stabilizing it against crystallization. The selective incorporation of potent additives in PNCs is a reliable chemical label that provides conclusive chemical evidence that ACC is a molecular PNC-derived precipitate. Our results reveal additive-cluster interactions beyond established mechanistic conceptions. They reassess the role of small-MW molecules in crystallization and biomineralization while breaking grounds for new sustainable antiscalants.
Collapse
Affiliation(s)
- Patrick Duchstein
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Simon Leupold
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Shifi Kababya
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Maria R. Cicconi
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Dominique de Ligny
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science (JCNS)Forschungszentrum Jülich GmbHOutstation at FRM IILichtenbergstrasse 185747GarchingGermany
| | - David Eike
- The Procter & Gamble CompanyMason Business Center8700 Mason-Montgomery RoadMasonOH 45040USA
| | - Asher Schmidt
- Schulich Faculty of Chemistry and the Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifa32000Israel
| | - Dirk Zahn
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department of Chemistry and PharmacyChair for Theoretical Chemistry/Computer Chemistry Centre (CCC)Nägelsbachstrasse 2591058ErlangenGermany
| | - Stephan E. Wolf
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Department for Materials Science and EngineeringInstitute for Glass and CeramicsMartensstrasse 591058ErlangenGermany
| |
Collapse
|
14
|
Duchstein P, Schodder PI, Leupold S, Dao TQN, Kababya S, Cicconi MR, de Ligny D, Pipich V, Eike D, Schmidt A, Zahn D, Wolf SE. Small‐Molecular‐Weight Additives Modulate Calcification by Interacting with Prenucleation Clusters on the Molecular Level. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Philipp I. Schodder
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Simon Leupold
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Thi Q. N. Dao
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Shifi Kababya
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Maria R. Cicconi
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute for Glass and Ceramics GERMANY
| | - Dominique de Ligny
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Lehrstuhl für Glas und Keramik GERMANY
| | - Vitaliy Pipich
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH Garching GERMANY
| | | | - Asher Schmidt
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Dirk Zahn
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry Department GERMANY
| | - Stephan E. Wolf
- Friedrich-Alexander University Erlangen-Nürnberg – Institute of Glass and Ceramics Department of Materials Science and Engineering Martensstrasse 5 91058 Erlangen GERMANY
| |
Collapse
|
15
|
Merle M, Soulié J, Sassoye C, Roblin P, Rey C, Bonhomme C, Combes C. Pyrophosphate-stabilised amorphous calcium carbonate for bone substitution: toward a doping-dependent cluster-based model. CrystEngComm 2022. [DOI: 10.1039/d2ce00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiscale and multitool advanced characterisation of pyrophosphate-stabilised amorphous calcium carbonates allowed building a cluster-based model paving the way for tunable biomaterials.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Pierre Roblin
- LGC, Université de Toulouse, CNRS, 118 Route de Narbonne Bâtiment 2R1, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| |
Collapse
|