1
|
Lin W, Wang S, Liu R, Zhang D, Zhang J, Qi X, Li Z, Miao M, Cai X, Su G. Research progress of cPLA2 in cardiovascular diseases (Review). Mol Med Rep 2025; 31:103. [PMID: 39981923 PMCID: PMC11868774 DOI: 10.3892/mmr.2025.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Cytoplasmic phospholipase A2 (cPLA2) is a vital member of the PLA2 family. Studies have demonstrated that cPLA2 plays a key role in various inflammatory‑related diseases and cancers. However, limited research has focused on cPLA2 in cardiovascular diseases. The present review discussed and summarized the research progress on cPLA2 in atherosclerosis, cardiomyopathy, myocardial ischemia‑reperfusion injury and other related conditions. It also highlighted the critical molecular mechanisms by which cPLA2 regulates the pathophysiological processes of vascular endothelial cells, platelets and myocardial cells in cardiovascular diseases. Current studies confirm that cPLA2 plays an important role in cardiovascular diseases and has the potential to become a therapeutic target for the diagnosis, treatment evaluation and prognosis of these conditions. The present review systematically explored the significant role of cPLA2 in cardiovascular diseases and elaborated on its underlying molecular mechanisms. The findings aimed to refine the theoretical understanding of cardiovascular disease pathogenesis and provide a foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Wenyu Lin
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Ronghan Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Dan Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Jiaxing Zhang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaohan Qi
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Zheng Li
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Meng Miao
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
2
|
Mahajan N, Luo Q, Abhyankar S, Bhatwadekar AD. Transcriptomic Profile of Lin -Sca1 +c-kit (LSK) cells in db/db mice with long-standing diabetes. BMC Genomics 2024; 25:782. [PMID: 39134978 PMCID: PMC11318115 DOI: 10.1186/s12864-024-10679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Lin-Sca1+c-Kit+ (LSK) fraction of the bone marrow (BM) comprises multipotent hematopoietic stem cells (HSCs), which are vital to tissue homeostasis and vascular repair. While diabetes affects HSC homeostasis overall, the molecular signature of mRNA and miRNA transcriptomic under the conditions of long-standing type 2 diabetes (T2D;>6 months) remains unexplored. METHODS In this study, we assessed the transcriptomic signature of HSCs in db/db mice, a well-known and widely used model for T2D. LSK cells of db/db mice enriched using a cell sorter were subjected to paired-end mRNA and single-end miRNA seq library and sequenced on Illumina NovaSeq 6000. The mRNA sequence reads were mapped using STAR (Spliced Transcripts Alignment to a Reference), and the miRNA sequence reads were mapped to the designated reference genome using the Qiagen GeneGlobe RNA-seq Analysis Portal with default parameters for miRNA. RESULTS We uncovered 2076 out of 13,708 mRNAs and 35 out of 191 miRNAs that were expressed significantly in db/db animals; strikingly, previously unreported miRNAs (miR-3968 and miR-1971) were found to be downregulated in db/db mice. Furthermore, we observed a molecular shift in the transcriptome of HSCs of diabetes with an increase in pro-inflammatory cytokines (Il4, Tlr4, and Tnf11α) and a decrease in anti-inflammatory cytokine IL10. Pathway mapping demonstrated inflammation mediated by chemokine, cytokine, and angiogenesis as one of the top pathways with a significantly higher number of transcripts in db/db mice. These molecular changes were reflected in an overt defect in LSK mobility in the bone marrow. miRNA downstream target analysis unveils several mRNAs targeting leukocyte migration, microglia activation, phagosome formation, and macrophage activation signaling as their primary pathways, suggesting a shift to an inflammatory phenotype. CONCLUSION Our findings highlight that chronic diabetes adversely alters HSCs' homeostasis at the transcriptional level, thus potentially contributing to the inflammatory phenotype of HSCs under long-term diabetes. We also believe that identifying HSCs-based biomarkers in miRNAs or mRNAs could serve as diagnostic markers and potential therapeutic targets for diabetes and associated vascular complications.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Qianyi Luo
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Surabhi Abhyankar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Cock IE. Terminalia ferdinandiana Exell. extracts reduce pro-inflammatory cytokine and PGE 2 secretion, decrease COX-2 expression and down-regulate cytosolic NF-κB levels. Inflammopharmacology 2024; 32:1839-1853. [PMID: 38581641 PMCID: PMC11136772 DOI: 10.1007/s10787-024-01462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Based on their high antioxidant capacity and noteworthy phytochemistry, Terminalia ferdinandiana fruit and leaves have attracted considerable recent interest for their therapeutic potential. Whilst those studies have reported a variety of therapeutic properties for the fruit, the anti-inflammatory potential of T. ferdinandiana has been largely neglected and the leaves have been almost completely ignored. This study investigated the immune-modulatory and anti-inflammatory properties of T. ferdinandiana fruit and leaf extracts by evaluating their inhibition of multiple pro- and anti-inflammatory cytokines and chemokines secretion in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 macrophages using multiplex bead immunoassays and ELISA assays. The methanolic extracts were particularly good immune-modulators, significantly inhibiting the secretion of all the cytokines and chemokines tested. Indeed, the methanolic extracts completely inhibited IL-10, IFN-γ, IL-1β, IL-6, MCP-1, and MIP-2a secretion, and almost completely inhibited the secretion of TNF-α. In addition, the methanolic T. ferdinandiana extracts also significantly inhibited cytosolic COX-2 levels (by 87-95%) and the synthesis of the PGE2 (by ~ 98%). In contrast, the methanolic extracts stimulated LTB4 secretion by ~ 60-90%, whilst the aqueous extracts significantly inhibited LTB4 secretion (by ~ 27% each). Exposure of RAW 264.7 cells to the methanolic T. ferdinandiana extracts also significantly down-regulated the cytosolic levels of NF-κB by 33-44%, indicating that the immune-modulatory and anti-inflammatory properties of the extracts may be regulated via a decrease in NF-κB transcription pathways. Taken together, these results demonstrate potent anti-inflammatory properties for the extracts and provide insights into their anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ian E Cock
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan Campus, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
4
|
Tikhonova IV, Dyukina AR, Grinevich AA, Shaykhutdinova ER, Safronova VG. Changed regulation of granulocyte NADPH oxidase activity in the mouse model of obesity-induced type 2 diabetes mellitus. Free Radic Biol Med 2024; 216:33-45. [PMID: 38479632 DOI: 10.1016/j.freeradbiomed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia.
| | - Alsu R Dyukina
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Prospect Nauki, 6, Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3, Pushchino, 142290, Russia
| |
Collapse
|
5
|
Luvizotto MJ, Menezes-Silva L, Woronik V, Monteiro RC, Câmara NOS. Gut-kidney axis in IgA nephropathy: Role on mesangial cell metabolism and inflammation. Front Cell Dev Biol 2022; 10:993716. [PMID: 36467425 PMCID: PMC9715425 DOI: 10.3389/fcell.2022.993716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2023] Open
Abstract
IgA Nephropathy (IgAN) is the commonest primary glomerular disease around the world and represents a significant cause of end-stage renal disease. IgAN is characterized by mesangial deposition of IgA-immune complexes and mesangial expansion. The pathophysiological process includes an abnormally glycosylated IgA1, which is an antigenic target. Autoantibodies specifically recognize galactose-deficient IgA1 forming immune complexes that are amplified in size by the soluble IgA Fc receptor CD89 leading to deposition in the mesangium through interaction with non-classical IgA receptors. The local production of cytokines promotes local inflammation and complement system activation, besides the stimulation of mesangial proliferation. The spectrum of clinical manifestations is quite variable from asymptomatic microscopic hematuria to rapidly progressive glomerulonephritis. Despite all the advances, the pathophysiology of the disease is still not fully elucidated. The mucosal immune system is quoted to be a factor in triggering IgAN and a "gut-kidney axis" is proposed in its development. Furthermore, many recent studies have demonstrated that food intake interferes directly with disease prognosis. In this review, we will discuss how mucosal immunity, microbiota, and nutritional status could be interfering directly with the activation of intrinsic pathways of the mesangial cells, directly resulting in changes in their function, inflammation and development of IgAN.
Collapse
Affiliation(s)
- Mateus Justi Luvizotto
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Luísa Menezes-Silva
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Viktoria Woronik
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Renato C. Monteiro
- Centre de Recherche sur l’Inflammation, INSERM and CNRS, Université Paris Cité, Paris, France
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
The Use of Palmitoylethanolamide in the Treatment of Long COVID: A Real-Life Retrospective Cohort Study. Med Sci (Basel) 2022; 10:medsci10030037. [PMID: 35893119 PMCID: PMC9326613 DOI: 10.3390/medsci10030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 can cause symptoms that last weeks or months after the infection has gone, with a significant impairment of quality of life. Palmitoylethanolamide (PEA) is a naturally occurring lipid mediator that has an entourage effect on the endocannabinoid system mitigating the cytokine storm. The aim of this retrospective study is to evaluate the potential efficacy of PEA in the treatment of long COVID. Patients attending the Neurological Out Clinic of the IRCCS Centro Neurolesi Bonino-Pulejo (Messina, Italy) from August 2020 to September 2021 were screened for potential inclusion in the study. We included only long COVID patients who were treated with PEA 600 mg two times daily for about 3 months. All patients performed the post-COVID-19 Functional Status (PCFS) scale. Thirty-three patients (10 males, 43.5%, mean age 47.8 ± 12.4) were enrolled in the study. Patients were divided into two groups based on hospitalization or home care observation. A substantial difference in the PCFS score between the two groups at baseline and after treatment with PEA were found. We found that smoking was a risk factor with an odds ratio of 8.13 CI 95% [0.233, 1.167]. Our findings encourage the use of PEA as a potentially effective therapy in patients with long COVID.
Collapse
|