1
|
Zhang T, Zhu K, Zhang X, Yu X, Shen L, Gao D, Chen Y, Wang Q, Chen S, Bao L. Development of CadR-based cadmium whole cell biosensor for visual detection of environmental Cd 2. Anal Chim Acta 2024; 1330:343299. [PMID: 39489979 DOI: 10.1016/j.aca.2024.343299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND As a threat to human health and public health, cadmium (Cd) pollution has received widespread social concern. Our previously constructed CadR-based bacterial whole cell biosensor (WCB) epCadR5 showed high sensitivity and specificity in cadmium detection. However, the application of the sensor is still hindered by the need for laboratory equipment to read the fluorescence signal output. In this study, we aimed to optimizing the sensor to make it available for visual detection of environmental cadmium and simplify the detection process to advance practical application of the sensor. RESULTS By replacing the constitutive promoter with J110, the fluorescence signal output of the sensor was significantly increased and the fluorescence leakage was decreased. In addition, the fluorescence signal output of green fluorescence protein (GFP) was enhanced by the addition of a 5' untranslated region (5'-UTR) mlcR10. The fluorescence signal output of the WCB is sufficiently robust to be visible and distinguishable to the naked eye, which is of paramount importance for visual detection. The sensor readout can be conveniently recorded by mobile phone camera and quantified. For ease of on-site application, the WCB's visual detection procedures and conditions were further optimized and simplified. The WCB demonstrated good linearity and detection limit (1.81 μg/L) for visual detection of Cd2+ without the assistance of bulky laboratory equipment. For the detection of real environmental samples, the WCB visual detection results were close to those of WCB-flow cytometry (FACS) and graphite furnace atomic absorption spectroscopy (GFAAS). SIGNIFICANCE In this work, we developed an easy-to-use, on-site and visual detection biosensor for monitoring environmental Cd2+. It will advance the utilization of cadmium WCBs in practical settings. The optimization and simplification strategy in the study also provide new insights into the visualization of other bacterial biosensors, and will advance the practical application of WCBs.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - KaiLi Zhu
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui, China
| | - Xia Zhang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Xin Yu
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Liang Shen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Defeng Gao
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yiwen Chen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qinghua Wang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China.
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, 230039, Hefei, Anhui, China.
| |
Collapse
|
2
|
Liu MQ, Guo Y, Wu C, Gao CX, Liu F, Hui CY. Visual arsenic detection in environmental waters: Innovating with a naked-eye biosensor for universal application. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135398. [PMID: 39096639 DOI: 10.1016/j.jhazmat.2024.135398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Arsenic contamination in environmental water sources poses a significant threat to human health, necessitating the development of sensitive and accessible detection methods. This study presents a multidimensional optimization of a bacterial biosensor for the susceptible and deoxyviolacein (DV)-based visual detection of arsenic. The research involved screening six different arsenic resistance (ars) operons and optimizing the genetic circuit to minimize background noise. Introducing an arsenic-specific transport channel enhanced the sensor's sensitivity to 1 nM with a quantitative range from 0.036 to 1.171 μM. The pigment-based biosensor offers a simple colorimetric approach for arsenic detection without complex instrumentation. The preferred biosensor demonstrated characteristics of anti-chelating agent interference, consistently quantified As(III) concentrations ranging from 0.036 to 1.171 μM covering the World Health Organization (WHO) drinking water limit. Innovatively, it effectively detects arsenic in seawater within a linear regression range of 0.071 to 1.125 μM. The biosensor's selectivity for arsenic was confirmed, with minimal cross-response to group 15 metals. Our naked-eye biosensor offers a novel approach for the rapid, on-site detection of arsenic in various water sources. Its simplicity, cost-effectiveness, and versatility make it a valuable tool for environmental monitoring and public health initiatives.
Collapse
Affiliation(s)
- Ming-Qi Liu
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Can Wu
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chao-Xian Gao
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Fen Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China.
| |
Collapse
|
3
|
Wang Y, Sun W, Ma T, Brake J, Zhang S, Chen Y, Li J, Wu X. Establishment of a Rapid Detection Method for Cadmium Ions via a Specific Cadmium Chelator N-(2-Acetamido)-Iminodiacetic Acid Screened by a Novel Biological Method. Foods 2024; 13:2684. [PMID: 39272450 PMCID: PMC11394572 DOI: 10.3390/foods13172684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Heavy metal ions such as cadmium, mercury, lead, and arsenic in the soil cannot be degraded naturally and are absorbed by crops, leading to accumulation in agricultural products, which poses a serious threat to human health. Therefore, establishing a rapid and efficient method for detecting heavy metal ions in agricultural products is of great significance to ensuring the health and safety. In this study, a novel optimized spectrometric method was developed for the rapid and specific colorimetric detection of cadmium ions based on N-(2-Acetamido)-iminodiacetic acid (ADA) and Victoria blue B (VBB) as the chromogenic unit. The safety evaluation of ADA showed extremely low biological toxicity in cultured cells and live animals. The standard curve is y = 0.0212x + 0.1723, R2 = 0.9978, and LOD = 0.08 μM (0.018 mg/kg). The liner concentrations detection range of cadmium is 0.1-10 μM. An inexpensive paper strip detection method was developed with a detection limit of 0.2 μM to the naked eye and a detection time of less than 1 min. The method was successfully used to assess the cadmium content of rice, soybean, milk, grape, peach, and cabbage, and the results correlated well with those determined by inductively coupled plasma-mass spectrometry (ICP-MS). Thus, our study demonstrated a novel rapid, safe, and economical method for onsite, real-time detection of cadmium ions in agricultural products.
Collapse
Affiliation(s)
- Yali Wang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Department of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Wenxue Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tinglin Ma
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Joseph Brake
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Shuangbo Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yanke Chen
- Department of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Jing Li
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE106 91 Stockholm, Sweden
| | - Xiaobin Wu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Guo Y, Hu SY, Wu C, Gao CX, Hui CY. Biosynthesis of Indigo Dyes and Their Application in Green Chemical and Visual Biosensing for Heavy Metals. ACS OMEGA 2024; 9:33868-33881. [PMID: 39130558 PMCID: PMC11308077 DOI: 10.1021/acsomega.4c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Fermentative production of natural colorants using microbial strains has emerged as a cost-effective and sustainable alternative to chemical synthesis. Visual pigments are used as signal outputs in colorimetric bacterial biosensors, a promising method for monitoring environmental pollutants. In this study, we engineered four self-sufficient indigo-forming enzymes, including HbpAv, bFMO, cFMO, and rFPMO, in a model bacterium E. coli. TrxA-bFMO was chosen for its strong ability to produce indigo under T7 lac and mer promoters' regulation. The choice of bacterial hosts, the supplementation of substrate l-tryptophan, and ventilation were crucial factors affecting indigo production. The indigo reporter validated the biosensors for Hg(II), Pb(II), As(III), and Cd(II). The biosensors reported Hg(II) as low as 14.1 nM, Pb(II) as low as 1.5 nM, and As(III) as low as 4.5 nM but increased to 25 μM for Cd(II). The detection ranges for Hg(II), Pb(II), As(III), and Cd(II) were quantified from 14.1 to 225 nM, 1.5 to 24.4 nM, 4.5 to 73.2 nM, and 25 to 200 μM, respectively. The sensitivity, responsive concentration range, and selectivity are comparable to β-galactosidase and luciferase reporter enzymes. This study suggests that engineered enzymes for indigo production have great potential for green chemical synthesis. Additionally, heterologous biosynthesis of indigo production can lead to the development of novel, low-cost, and mini-equipment bacterial biosensors with zero background noise for visual monitoring of pollutant heavy metals.
Collapse
Affiliation(s)
- Yan Guo
- National
Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Shun-Yu Hu
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
- Department
of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Can Wu
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
- Department
of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chao-Xian Gao
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Chang-Ye Hui
- Department
of Pathology and Toxicology, Shenzhen Prevention
and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| |
Collapse
|
5
|
Wei Y, Shi D, Chen T, Zhou S, Yang Z, Li H, Yang D, Li J, Jin M. CRISPR/Cas9-based engineered Escherichia coli biosensor for sensitive and specific detection of Cd(II) in drinking water. CHEMOSPHERE 2024; 362:142607. [PMID: 38876330 DOI: 10.1016/j.chemosphere.2024.142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Cadmium (Cd) is a ubiquitous pollutant that poses a potential threat to human health. Monitoring Cd(II) in drinking water has significant implications for preventing potential threats of Cd(II) to human. However, the weak signal output and response to nontarget interference limit the detection of Cd(II) using bacterial biosensors. In this study, to enable sensitive and specific detection of Cd(II) in water, a stable whole-cell biosensor, K12-PMP-luxCDABE-△cysI, was constructed in a dual-promoter mode by fusing the mercury promoter Pmer, regulatory gene merR(m), and luciferase gene luxCDABE into the E.coli chromosome based on CRISPR/Cas9 gene editing technology. By knocking out the cadmium-resistance-gene cysI, the sensitivity of the biosensor to Cd(II) was further enhanced. The constructed E. coli biosensor K12-PMP-luxCDABE-△cysI exhibited good nonlinear responses to 0.005-2 mg/L Cd(II). Notably, among the three constructed E. coli biosensor, it exhibited the strongest fluorescence intensity, with the limit of detection meeting the allowable limit for Cd(II) in drinking water. Simultaneously, it could specifically detect Cd(II). Nontarget metal ions, such as Zn(II), Hg(II), and Pb(II), did not affect its performance. Furthermore, it exhibited superior performance in detecting Cd(II) in real drinking water samples by avoiding background interference, and showed excellent stability with the relative standard deviation under 5%. Thus, K12-PMP-luxCDABE-△cysI holds promise as a potential tool for the detection of Cd(II) in drinking water.
Collapse
Affiliation(s)
- Yijun Wei
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Danyang Shi
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Tianjiao Chen
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Shuqing Zhou
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Zhongwei Yang
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Haibei Li
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Dong Yang
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Junwen Li
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Min Jin
- Military Medical Sciences Academy, Academy of Military Sciences, China.
| |
Collapse
|
6
|
Zhang J, Guo Y, Lin YR, Ma BC, Ge XR, Zhang WQ, Zhang NX, Yang SM, Hui CY. Detection of Cadmium in Human Biospecimens by a Cadmium-Selective Whole-Cell Biosensor Based on Deoxyviolacein. ACS Biomater Sci Eng 2024; 10:4046-4058. [PMID: 38722544 DOI: 10.1021/acsbiomaterials.3c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cadmium poses a severe health risk, impacting various bodily systems. Monitoring human exposure is vital. Urine and blood cadmium serve as critical biomarkers. However, current urine and blood cadmium detection methods are expensive and complex. Being cost-effective, user-friendly, and efficient, visual biosensing offers a promising complement to existing techniques. Therefore, we constructed a cadmium whole-cell biosensor using CadR10 and deoxyviolacein pigment in this study. We assessed the sensor for time-dose response, specific response to cadmium, sensitivity response to cadmium, and stability response to cadmium. The results showed that (1) the sensor had a preferred signal-to-noise ratio when the incubation time was 4 h; (2) the sensor showed excellent specificity for cadmium compared to the group 12 metals and lead; (3) the sensor was responsive to cadmium down to 1.53 nM under experimental conditions and had good linearity over a wide range from 1.53 nM to 100 μM with good linearity (R2 = 0.979); and (4) the sensor had good stability. Based on the excellent results of the performance tests, we developed a cost-effective, high-throughput method for detecting urinary and blood cadmium. Specifically, this was realized by adding the blood or urine samples into the culture system in a particular proportion. Then, the whole-cell biosensor was subjected to culture, n-butanol extraction, and microplate reading. The results showed that (1) at 20% urine addition ratio, the sensor had an excellent curvilinear relationship (R2 = 0.986) in the range of 3.05 nM to 100 μM, and the detection limit could reach 3.05 nM. (2) At a 10% blood addition ratio, the sensor had an excellent nonlinear relationship (R2 = 0.978) in the range of 0.097-50 μM, and the detection limit reached 0.195 μM. Overall, we developed a sensitive and wide-range method based on a whole-cell biosensor for the detection of cadmium in blood and urine, which has the advantages of being cost-effective, ease of operation, fast response, and low dependence on instrumentation and has the potential to be applied in the monitoring of cadmium exposure in humans as a complementary to the mainstream detection techniques.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Yi-Ran Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Bing-Chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xue-Ru Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Wen-Qi Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Nai-Xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Shu-Man Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| |
Collapse
|
7
|
Shen L, Chen Y, Hu L, Zhang C, Liu L, Bao L, Ma J, Wang H, Xiao X, Wu L, Chen S. Development of a Highly Sensitive, Visual Platform for the Detection of Cadmium in Actual Wastewater Based on Evolved Whole-Cell Biosensors. ACS Sens 2024; 9:654-661. [PMID: 38329934 DOI: 10.1021/acssensors.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A whole-cell biosensor (WCB) is a convenient and cost-effective method for detecting contaminants. However, the practical application of the cadmium WCBs has been hampered by performance deficiencies, such as low sensitivity, specificity, and responsive strength. In this study, to improve the performance of cadmium WCBs, the cadmium transcription factor (CadC) and its DNA binding site (CadO), the key sensing module of the biosensor, were successively and separately subjected to a two-step directed evolution: 6-round random mutagenesis for CadC and 2-round saturation mutagenesis for CadO. For practical application, the GFP reporter gene was replaced with the lacZ gene and a facile and rapid smartphone detection platform for actual water samples was established by optimizing the reaction systems with detergents. The results showed that the evolved cadmium fluorescent biosensor CadO66 exhibited a higher specificity and a detection limit of 0.034 μg/L, representing a 19-fold reduction compared to the wild-type cadmium biosensor. The detergent sodium dodecylbenzenesulfonate effectively enhanced the visualization of WCB B0033-lacZ. Using the fluorescent WCB CadO66 and the visual WCB B0033-lacZ to analyze the cadmium contents of the actual water samples, the results were also consistent with a graphite furnace atomic absorption spectrometer. Taken together, this study indicates that the two-step directed evolution of CadC and CadO can efficiently improve the performance of cadmium WCBs, further promoting the utilization of WCB in actual sample detection and presenting a promising and feasible method for rapid sample detection.
Collapse
Affiliation(s)
- Liang Shen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yiwen Chen
- Wannan Medical College, Wuhu 241002, China
| | - Liangwen Hu
- Wuhu Agricultural Products and Food Testing Center Co. Ltd., Wuhu 241000, China
| | | | | | | | - Jie Ma
- Wannan Medical College, Wuhu 241002, China
| | - Hongqiang Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shaopeng Chen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
8
|
Yimer M, Ansari SN, Berehe BA, Gudimella KK, Gedda G, Girma WM, Hasan N, Tasneem S. Adsorptive removal of heavy metals from wastewater using Cobalt-diphenylamine (Co-DPA) complex. BMC Chem 2024; 18:23. [PMID: 38287347 PMCID: PMC10826029 DOI: 10.1186/s13065-024-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Heavy metals like Cadmium, Lead, and Chromium are the pollutants emitted into the environment through industrial development. In this work, a new diphenylamine coordinated cobalt complex (Co-DPA) has been synthesized and tested for its efficiency in removing heavy metals from wastewater, and its adsorption capacity was investigated. The effectiveness of heavy metals removal by Co-DPA was evaluated by adjusting the adsorption parameters, such as adsorbent dose, pH, initial metals concentration, and adsorption period. Heavy metal concentrations in real sample were 0.267, 0.075, and 0.125 mg/L for Cd2+, Pb2+, and Cr3+ before using as-synthesized Co-DPA to treat wastewater. After being treated with synthesized Co-DPA the concentration of heavy metals was reduced to 0.0129, 0.00028, 0.00054 mg/L for Cd2+, Pb2+, and Cr3+, respectively, in 80 min. The removal efficiency was 95.6%, 99.5%, and 99.5% for the respective metals. The adsorption process fitted satisfactorily with Freundlich isotherm with R2(0.999, 0.997, 0.995) for Cd2+, Pb2+, and Cr3+, respectively. The kinetic data obeyed the pseudo-second order for Cd2+ and Cr2+ and the pseudo-first order for Pb2+. Based on the results obtained within the framework of this study, it is concluded that the as-synthesized Co-DPA is a good adsorbent to eliminate heavy metal ions like Cd2+, Pb2+, and Cr3+from wastewater solution. In general, Co-DPA is a promising new material for the removal of heavy metal ions from water.
Collapse
Affiliation(s)
- Mesfin Yimer
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Shagufi Naz Ansari
- Department of Chemistry, School of Engineering, Presidency University, Bangalore, Karnataka, 560064, India
| | - Biniyam Abdu Berehe
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia
| | - Krishna Kanthi Gudimella
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Rudraram, Telangana, 502329, India
| | - Gangaraju Gedda
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to Be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| | - Wubshet Mekonnen Girma
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box:1145, Dessie, Ethiopia.
| | - Nazim Hasan
- Department of Chemistry, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Shadma Tasneem
- Department of Chemistry, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Perelomov L, Rajput VD, Gertsen M, Sizova O, Perelomova I, Kozmenko S, Minkina T, Atroshchenko Y. Ecological features of trace elements tolerant microbes isolated from sewage sludge of urban wastewater treatment plant. STRESS BIOLOGY 2024; 4:8. [PMID: 38273092 PMCID: PMC10810767 DOI: 10.1007/s44154-023-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15-30°C at pH range of 5-9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1-5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.
Collapse
Affiliation(s)
- L Perelomov
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia.
| | - V D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - M Gertsen
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| | - O Sizova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| | - I Perelomova
- Tula State University, Lenin Avenue, 92, Tula, 300026, Russia
| | - S Kozmenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - T Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Y Atroshchenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| |
Collapse
|
10
|
Hui CY, Ma BC, Hu SY, Wu C. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123016. [PMID: 38008253 DOI: 10.1016/j.envpol.2023.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Mercury (Hg) and its inorganic and organic compounds significantly threaten the ecosystem and human health. However, the natural and anthropogenic Hg environmental inputs exceed 5000 metric tons annually. Hg is usually discharged in elemental or ionic forms, accumulating in surface water and sediments where Hg-methylating microbes-mediated biotransformation occurs. Microbial genetic factors such as the mer operon play a significant role in the complex Hg biogeochemical cycle. Previous reviews summarize the fate of environmental Hg, its biogeochemistry, and the mechanism of bacterial Hg resistance. This review mainly focuses on the mer operon and its components in detecting, absorbing, bioaccumulating, and detoxifying environmental Hg. Four components of the mer operon, including the MerR regulator, divergent mer promoter, and detoxification factors MerA and MerB, are rare bio-parts for assembling synthetic bacteria, which tackle pollutant Hg. Bacteria are designed to integrate synthetic biology, protein engineering, and metabolic engineering. In summary, this review highlights that designed bacteria based on the mer operon can potentially sense and bioremediate pollutant Hg in a green and low-cost manner.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shun-Yu Hu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Can Wu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
11
|
Hui CY, Ma BC, Wang YQ, Yang XQ, Cai JM. Designed bacteria based on natural pbr operons for detecting and detoxifying environmental lead: A mini-review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115662. [PMID: 37939554 DOI: 10.1016/j.ecoenv.2023.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb), a naturally occurring element, is redistributed in the environment mainly due to anthropogenic activities. Pb pollution is a crucial public health problem worldwide due to its adverse effects. Environmental bacteria have evolved various protective mechanisms against high levels of Pb. The pbr operon, first identified in Cupriavidus metallidurans CH34, encodes a unique Pb(II) resistance mechanism involving transport, efflux, sequestration, biomineralization, and precipitation. Similar pbr operons are gradually found in diverse bacterial strains. This review focuses on the pbr-encoded Pb(II) resistance system. It summarizes various whole-cell biosensors harboring artificially designed pbr operons for Pb(II) biomonitoring with fluorescent, luminescent, and colorimetric signal output. Optimization of genetic circuits, employment of pigment-based reporters, and screening of host cells are promising in improving the sensitivity, selectivity, and response range of whole-cell biosensors. Engineered bacteria displaying Pb(II) binding and sequestration proteins, including PbrR and its derivatives, PbrR2 and PbrD, for adsorption are involved. Although synthetic bacteria show great potential in determining and removing Pb at the nanomolar level for environmental protection and food safety, some challenges must be addressed to meet demanding application requirements.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yong-Qiang Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Xue-Qin Yang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Jin-Min Cai
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| |
Collapse
|
12
|
Zhu DL, Guo Y, Ma BC, Lin YQ, Wang HJ, Gao CX, Liu MQ, Zhang NX, Luo H, Hui CY. Pb(II)-inducible proviolacein biosynthesis enables a dual-color biosensor toward environmental lead. Front Microbiol 2023; 14:1218933. [PMID: 37577420 PMCID: PMC10413148 DOI: 10.3389/fmicb.2023.1218933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
With the rapid development of synthetic biology, various whole-cell biosensors have been designed as valuable biological devices for the selective and sensitive detection of toxic heavy metals in environmental water. However, most proposed biosensors are based on fluorescent and bioluminescent signals invisible to the naked eye. The development of visible pigment-based biosensors can address this issue. The pbr operon from Klebsiella pneumoniae is selectively induced by bioavailable Pb(II). In the present study, the proviolacein biosynthetic gene cluster was transcriptionally fused to the pbr Pb(II) responsive element and introduced into Escherichia coli. The resultant biosensor responded to Pb(II) in a time- and dose-dependent manner. After a 5-h incubation with Pb(II), the brown pigment was produced, which could be extracted into n-butanol. Extra hydrogen peroxide treatment during n-butanol extract resulted in the generation of a stable green pigment. An increased brown signal was observed upon exposure to lead concentrations above 2.93 nM, and a linear regression was fitted from 2.93 to 3,000 nM. Extra oxidation significantly decreased the difference between parallel groups. The green signal responded to as low as 0.183 nM Pb(II), and a non-linear regression was fitted in a wide concentration range from 0.183 to 3,000 nM. The specific response toward Pb(II) was not interfered with by various metals except for Cd(II) and Hg(II). The PV-based biosensor was validated in monitoring bioaccessible Pb(II) spiked into environmental water. The complex matrices did not influence the regression relationship between spiked Pb(II) and the dual-color signals. Direct reading with the naked eye and colorimetric quantification enable the PV-based biosensor to be a dual-color and low-cost bioindicator for pollutant heavy metal.
Collapse
Affiliation(s)
- De-long Zhu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Bing-chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-qin Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hai-jun Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chao-xian Gao
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Ming-qi Liu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Nai-xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hao Luo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chang-ye Hui
- School of Public Health, Guangdong Medical University, Dongguan, China
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
13
|
Hui CY, Hu SY, Yang XQ, Guo Y. A panel of visual bacterial biosensors for the rapid detection of genotoxic and oxidative damage: A proof of concept study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503639. [PMID: 37188434 DOI: 10.1016/j.mrgentox.2023.503639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
The emergence of new compounds during the past decade requires a high-throughput screening method for toxicity assay. The stress-responsive whole-cell biosensor is a powerful tool to evaluate direct or indirect damages of biological macromolecules induced by toxic chemicals. In this proof-of-concept study, nine well-characterized stress-responsive promoters were first selected to assemble a set of blue indigoidine-based biosensors. The PuspA-based, PfabA-based, and PgrpE-based biosensors were eliminated due to their high background. A dose-dependent increase of visible blue signal was observed in PrecA-, PkatG-, and PuvrA-based biosensors, responsive to potent mutagens, including mitomycin and nalidixic acid, but not to genotoxic lead and cadmium. The PrecA, PkatG, and Ppgi gene promoters were further fused to a purple deoxyviolacein synthetic enzyme cluster. Although high basal production of deoxyviolacein is unavoidable, an enhanced visible purple signal in response to mitomycin and nalidixic acid was observed as dose-dependent, especially in PkatG-based biosensors. The study shows that a set of stress-responsive biosensors employing visible pigment as a reporter is pre-validating in detecting extensive DNA damage and intense oxidative stress. Unlike widely-used fluorescent and bioluminescent biosensors, the visual pigment-based biosensor can become a novel, low-cost, mini-equipment, and high-throughput colorimetric device for the toxicity assessment of chemicals. However, combining multiple improvements can further improve the biosensing performance in future studies.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Shun-Yu Hu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
14
|
De León ME, Wilson HS, Jospin G, Eisen JA. Genome sequencing and multifaceted taxonomic analysis of novel strains of violacein-producing bacteria and non-violacein-producing close relatives. Microb Genom 2023; 9. [PMID: 37052581 PMCID: PMC10210950 DOI: 10.1099/mgen.0.000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/31/2023] [Indexed: 04/14/2023] Open
Abstract
Violacein is a water-insoluble violet pigment produced by various Gram-negative bacteria. The compound and the bacteria that produce it have been gaining attention due to the antimicrobial and proposed antitumour properties of violacein and the possibility that strains producing it may have broad industrial uses. Bacteria that produce violacein have been isolated from diverse environments including fresh and ocean waters, glaciers, tropical soils, trees, fish and the skin of amphibians. We report here the isolation and characterization of six violacein-producing bacterial strains and three non-violacein-producing close relatives, each isolated from either an aquatic environment or moist food materials in northern California, USA. For each isolate, we characterized traditional phenotypes, generated and analysed draft genome sequences, and carried out multiple types of taxonomic, phylogenetic and phylogenomic analyses. Based on these analyses we assign putative identifications to the nine isolates, which include representatives of the genera Chromobacterium, Aquitalea, Iodobacter, Duganella, Massilia and Janthinobacterium. In addition, we discuss the utility of various metrics for taxonomic assignment in these groups including average nucleotide identity, whole genome phylogenetic analysis and extent of recent homologous recombination using the software program PopCOGenT.
Collapse
Affiliation(s)
| | - Harriet S Wilson
- Department of Biological Sciences, Sierra College, Rocklin, CA, USA
| | - Guillaume Jospin
- Genome Center, University of California, Davis, CA, USA
- AnimalBiome, Oakland, CA, USA
| | - Jonathan A Eisen
- Genome Center, University of California, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Hu S, Zhang G, Jia X. Improvement of a highly sensitive and specific whole-cell biosensor by adding a positive feedback amplifier. Synth Syst Biotechnol 2023; 8:292-299. [PMID: 37090062 PMCID: PMC10113786 DOI: 10.1016/j.synbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, we designed a Cd2+ whole-cell biosensor with both positive and negative feedback cascade amplifiers in Pseudomonas putida KT2440 (LTCM) based on our previous design with only a negative feedback amplifier (TCM). The results showed that the newly developed biosensor LTCM was greatly improved compared to TCM. Firstly, the linear response range of LTCM was expanded while the maximum linear response range was raised from 0.05 to 0.1 μM. Meanwhile, adding a positive feedback amplifier further increased the fluorescence output signal of LTCM 1.11-2.64 times under the same culture conditions. Moreover, the response time of LTCM for detection of practical samples was reduced from 6 to 4 h. At the same time, LTCM still retained very high sensitivity and specificity, while its lowest detection limit was 0.1 nM Cd2+ and the specificity was 23.29 (compared to 0.1 nM and 17.55 in TCM, respectively). In summary, the positive and negative feedback cascade amplifiers effectively improved the performance of the biosensor LTCM, resulting in a greater linear response range, higher output signal intensity, and shorter response time than TCM while retaining comparable sensitivity and specificity, indicating better potential for practical applications.
Collapse
|
16
|
Hui CY, Hu SY, Li LM, Yun JP, Zhang YF, Yi J, Zhang NX, Guo Y. Metabolic engineering of the carotenoid biosynthetic pathway toward a specific and sensitive inorganic mercury biosensor. RSC Adv 2022; 12:36142-36148. [PMID: 36545109 PMCID: PMC9756418 DOI: 10.1039/d2ra06764a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The toxicity of mercury (Hg) mainly depends on its form. Whole-cell biosensors respond selectively to toxic Hg(ii), efficiently transformed by environmental microbes into methylmercury, a highly toxic form that builds up in aquatic animals. Metabolically engineered Escherichia coli (E. coli) have successfully produced rainbow colorants. By de novo reconstruction of the carotenoid synthetic pathway, the Hg(ii)-responsive production of lycopene and β-carotene enabled programmed E. coli to potentially become an optical biosensor for the qualitative and quantitative detection of ecotoxic Hg(ii). The red color of the lycopene-based biosensor cell pellet was visible upon exposure to 49 nM Hg(ii) and above. The orange β-carotene-based biosensor responded to a simple colorimetric assay as low as 12 nM Hg(ii). A linear response was observed at Hg(ii) concentrations ranging from 12 to 195 nM. Importantly, high specificity and good anti-interference capability suggested that metabolic engineering of the carotenoid biosynthesis was an alternative to developing a visual platform for the rapid analysis of the concentration and toxicity of Hg(ii) in environmentally polluted water.
Collapse
Affiliation(s)
- Chang-ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Shun-yu Hu
- Department of Toxicology, School of Public Health, Southern Medical UniversityGuangzhou 510515China
| | - Li-mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Jian-pei Yun
- Physical & Chemical Testing Laboratory, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Yan-fang Zhang
- Physical & Chemical Testing Laboratory, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Nai-xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| | - Yan Guo
- Department of Toxicology, School of Public Health, Southern Medical UniversityGuangzhou 510515China,National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational DiseasesShenzhen 518020China
| |
Collapse
|
17
|
Guo Y, Huang ZL, Zhu DL, Hu SY, Li H, Hui CY. Anthocyanin biosynthetic pathway switched by metalloregulator PbrR to enable a biosensor for the detection of lead toxicity. Front Microbiol 2022; 13:975421. [PMID: 36267188 PMCID: PMC9577363 DOI: 10.3389/fmicb.2022.975421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Environmental lead pollution mainly caused by previous anthropogenic activities continuously threatens human health. The determination of bioavailable lead is of great significance to predict its ecological risk. Bacterial biosensors using visual pigments as output signals have been demonstrated to have great potential in developing minimal-equipment biosensors for environmental pollutant detection. In this study, the biosynthesis pathway of anthocyanin was heterogeneously reconstructed under the control of the PbrR-based Pb(II) sensory element in Escherichia coli. The resultant metabolic engineered biosensor with colored anthocyanin derivatives as the visual signal selectively responded to concentrations as low as 0.012 μM Pb(II), which is lower than the detection limit of traditional fluorescent protein-based biosensors. A good linear dose–response pattern in a wide Pb(II) concentration range (0.012–3.125 μM) was observed. The color deepening of culture was recognized to the naked eye in Pb(II) concentrations ranging from 0 to 200 μM. Importantly, the response of metabolic engineered biosensors toward Pb(II) was not significantly interfered with by organic and inorganic ingredients in environmental water samples. Our findings show that the metabolic engineering of natural colorants has great potential in developing visual, sensitive, and low-cost bacterial biosensors for the detection and determination of pollutant heavy metals.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Zhen-lie Huang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - De-long Zhu
- School of Public Health, Guangdong Medical University, Dongguan, China
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Shun-yu Hu
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Han Li
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- College of Lab Medicine, Hebei North University, Zhangjiakou, China
| | - Chang-ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- *Correspondence: Chang-ye Hui,
| |
Collapse
|
18
|
Liu C, Yu H, Zhang B, Liu S, Liu CG, Li F, Song H. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants. Biotechnol Adv 2022; 60:108019. [PMID: 35853551 DOI: 10.1016/j.biotechadv.2022.108019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/18/2023]
Abstract
Biosensors have been widely used as cost-effective, rapid, in situ, and real-time analytical tools for monitoring environments. The development of synthetic biology has enabled emergence of genetically engineered whole-cell microbial biosensors. This review updates the design and optimization principles for a diverse array of whole-cell biosensors based on transcription factors (TF) including activators or repressors derived from heavy metal resistance systems, alkanes, and aromatics metabolic pathways of bacteria. By designing genetic circuits, the whole-cell biosensors could be engineered to intelligently sense heavy metals (Hg2+, Zn2+, Pb2+, Au3+, Cd2+, As3+, Ni2+, Cu2+, and UO22+) or organic compounds (alcohols, alkanes, phenols, and benzenes) through one-component or two-component system-based TFs, transduce signals through genetic amplifiers, and response as various outputs such as cell fluorescence and bioelectricity for monitoring heavy metals and organic pollutants in real conditions, synthetic curli and surface metal-binding peptides for in situ bio-sorption of heavy metals. We further review strategies that have been implemented to optimize the selectivity and correlation between ligand concentration and output signal of the TF-based biosensors, so as to meet requirements of practical applications. The optimization strategies include protein engineering to change specificities, promoter engineering to improve sensitivities, and genetic circuit-based amplification to enhance dynamic ranges via designing transcriptional amplifiers, logic gates, and feedback loops. At last, we outlook future trends in developing novel forms of biosensors.
Collapse
Affiliation(s)
- Changjiang Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huan Yu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Baocai Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shilin Liu
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|