1
|
Lewis A, Toufexis C, Goldsmith C, Robinson R, Howie G, Rattray B, Flood A. The Effects of Transcranial Direct Current Stimulation and Exercise on Salivary S100B Protein Indicated Blood-Brain Barrier Permeability: A Pilot Study. Neuromodulation 2025; 28:76-85. [PMID: 38159099 DOI: 10.1016/j.neurom.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aimed to assess the effect of transcranial direct current stimulation (tDCS) and exercise on blood-brain barrier (BBB) permeability in humans as assessed through the quantification of the salivary protein biomarker S100B. It was hypothesized that active tDCS would induce a significant increase in salivary S100B concentration when compared with sham stimulation and no stimulation. It also was hypothesized that the increase in salivary S100B concentration would be greater after active tDCS and exercise than after tDCS or exercise alone. MATERIALS AND METHODS A total of 13 healthy adults (five male, eight female), ranging in age from 21 to 32 years, underwent three experimental conditions (active tDCS, sham tDCS, inactive control). To assess exercise- and tDCS-induced changes in BBB permeability, S100B in saliva was measured. Saliva samples were taken before tDCS, after tDCS, and immediately after a ramped cycling time-to-exhaustion (TTE) task. Active tDCS involved the application of anodal stimulation over the primary motor cortex for 20 minutes at 2 mA. RESULTS S100B concentrations in the control condition did not differ significantly from the active condition (estimate = 0.10, SE = 0.36, t = 0.27, p = 0.79) or the sham condition (estimate = 0.33, SE = 0.36, t = 0.89, p = 0.38). Similarly, S100B concentrations at baseline did not differ significantly from post-intervention (estimate = -0.35, SE = 0.34, t = -1.03, p = 0.31) or post-TTE (estimate = 0.66, SE = 0.34, t = 1.93, p = 0.06). CONCLUSIONS This research provides novel insight into the effect of tDCS and exercise on S100B-indicated BBB permeability in humans. Although the effects of tDCS were not significant, increases in salivary S100B after a fatiguing cycling task may indicate exercise-induced changes in BBB permeability.
Collapse
Affiliation(s)
- Aidan Lewis
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia; University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia.
| | - Constantino Toufexis
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Chloe Goldsmith
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Rebecca Robinson
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Grace Howie
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Ben Rattray
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Andrew Flood
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia; University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
2
|
Fernández-Pereira C, Fernández-Ceballos MDLÁ, Olivares JM, Prieto-González JM, Agís-Balboa RC. Neurofilament light chain plasma levels in major depressive disorder: a brief research report. Front Psychiatry 2024; 15:1476248. [PMID: 39611129 PMCID: PMC11602450 DOI: 10.3389/fpsyt.2024.1476248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Peripheral neurofilament light chain (NfL) reflect neuronal and axonal damage. Most studies have been focused on NfL cerebrospinal fluid measures since peripheral levels were difficult to detect. However, with recent advent of single molecule array (SIMOA) technology, NfL is now detectable peripherally at small concentrations (pg/ml). In neurodegenerative disorders, NfL peripheral levels have been found significantly elevated compared against psychiatric disorders. However, there is still controversy of whether NfL peripheral levels might be altered in psychiatric disorders like major depressive disorder (MDD) when compared against a normal population. Methods We have measured NfL plasma levels by using single molecule array (SIMOA) technology in a Spanish small cohort of MDD patients (n = 15) and a HC group (n = 15). We have used subjective scales to estimate depression severity (HDRS), anhedonia (SAAS), the general cognitive state (MMSE) and episodic memory (FCSRT) in MDD patients. Results We have not detected a significant alteration in NfL plasma levels in MDD patients when compared against the HC subjects (U = 97, p-value = 0.532). Moreover, we have not detected any significant correlation between NfL plasma levels with any subjective scales. The only parameter that significantly and positively correlated with NfL plasma levels was age in both MDD and HC. Discussion Significant alteration in NfL plasma levels in MDD patients might reflect neurobiological changes behind the predisposition to develop future neurodegenerative disorders such as Alzheimer's or Parkinson's diseases for which depression represents a risk factor. However, whether there is an increase in NfL due to MDD regardless of the ageing process is still a matter of debate.
Collapse
Affiliation(s)
- Carlos Fernández-Pereira
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCII, Vigo, Spain
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
| | - María de los Ángeles Fernández-Ceballos
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS-Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCII, Vigo, Spain
| | - José M. Prieto-González
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Health Research Institute of Santiago of Compostela (IDIS), Santiago University Hospital Complex, Santiago de Compostela, Spain
- Transalational Research in Neurological Diseases Group (ITEN), Health Research Institute of Santiago de Compostela (IDIS), Santiago University Complex, SERGAS-USC, Santiago de Compostela, Spain
- Neurology Service, Santiago University Hospital Complex, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Huynh AN, Williams AM, Belcher EK, Van Haute P, Lotta LT, Thompson B, Netherby-Winslow C, Curtis A, Esparaz BT, Jorgensen C, Alberti S, Bentley E, Sun H, Culakova E, Janelsins MC. Changes in S100 calcium-binding protein β (S100β) and cognitive function from pre- to post-chemotherapy among women with breast cancer. Brain Behav Immun Health 2024; 41:100860. [PMID: 39391795 PMCID: PMC11466556 DOI: 10.1016/j.bbih.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 10/12/2024] Open
Abstract
Many patients with cancer experience cancer-related cognitive decline (CRCD). Previous studies have shown that elevated S100β, a calcium-binding protein commonly found in glial cells, can exhibit neurotoxic effects, including disruption of the blood-brain barrier (BBB). We studied changes in S100β levels in patients with breast cancer receiving chemotherapy, and the relationship to changes in cognitive function. A total of 505 women with breast cancer (mean (sd) age; 53.4 (53.6)) and 336 age-matched controls without cancer (52.8 (10.3)) were included from a nationwide study as part of the National Cancer Institute Community Oncology Research Program (NCORP). Both groups provided blood samples and completed neurocognitive assessments within 7 days before the patients with breast cancer received their first chemotherapy dose (pre-chemotherapy; T1) and within 1 month of their last chemotherapy administration (post-chemotherapy; T2). Utilizing a linear mixed model, multivariate linear regressions, and Spearman rank correlations (rs), we investigated longitudinal changes in serum S100β concentrations and their relationships to changes in neurocognitive outcomes over time. We observed an increase in S100β for patients with breast cancer (p = 0.002), but not for controls without cancer over time (p = 0.683). Additionally, we identified subtle relationships between increases in serum S100β and worsening in cognitive performance on the Backward Counting test (rs = 0.11, p = 0.041) and self-reported FACT-Cog Perceived Cognitive Abilities (rs = -0.10, p = 0.025). Regression analyses adjusted for age, race, body-mass index (BMI), education, menopausal status, anxiety, and depression revealed a trend remained for the relationship of S100β with Backward Counting. In conclusion, we found that patients with breast cancer experience a significant increase in concentration of serum S100β over the course of chemotherapy. This increase is correlated with worsening in some neurocognitive outcomes from pre-to post-chemotherapy, with trending results remaining following adjustment for covariates.
Collapse
Affiliation(s)
- Aaron N. Huynh
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
- University of Rochester Medical Center, Department of Neuroscience, Rochester, NY, 14642, USA
| | - AnnaLynn M. Williams
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
- Wilmot Cancer Institute, Rochester, NY, 14642, USA
| | - Elizabeth K. Belcher
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Paige Van Haute
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Louis T. Lotta
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Bryan Thompson
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Colleen Netherby-Winslow
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Amarinthia Curtis
- Upstate Carolina Consortium Community Oncology Research Program, Spartanburg Regional Medical Center, Spartanburg, SC, 29303, USA
| | | | - Carla Jorgensen
- NCORP of the Carolinas – Prism Health NCORP/Greenville, Greenville, SC, 29605, USA
| | - Sara Alberti
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Emma Bentley
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Hongying Sun
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Eva Culakova
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
| | - Michelle C. Janelsins
- University of Rochester Medical Center, Department of Surgery, Division of Supportive Care in Cancer, Rochester, NY, 14642, USA
- University of Rochester Medical Center, Department of Neuroscience, Rochester, NY, 14642, USA
- Wilmot Cancer Institute, Rochester, NY, 14642, USA
| |
Collapse
|
4
|
Bavato F, Barro C, Schnider LK, Simrén J, Zetterberg H, Seifritz E, Quednow BB. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol Psychiatry 2024; 29:2543-2559. [PMID: 38503931 PMCID: PMC11412913 DOI: 10.1038/s41380-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura K Schnider
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
6
|
Wallensten J, Ljunggren G, Nager A, Wachtler C, Bogdanovic N, Petrovic P, Carlsson AC. Stress, depression, and risk of dementia - a cohort study in the total population between 18 and 65 years old in Region Stockholm. Alzheimers Res Ther 2023; 15:161. [PMID: 37779209 PMCID: PMC10544453 DOI: 10.1186/s13195-023-01308-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Chronic stress and depression are potential risk factors for mild cognitive impairment and dementia, including Alzheimer disease. The aim was to investigate whether any such risk is additive. METHODS Cohort study including 1 362 548 people (665 997 women, 696 551 men) with records in the Region Stockholm administrative healthcare database (VAL). Exposure was a recorded ICD-10 diagnosis of chronic stress, depression, or both, recorded in 2012 or 2013. Outcome was a diagnosis of Alzheimer disease, other dementia, or mild cognitive impairment recorded from 2014 through 2022. Odds ratios with 99% confidence intervals (CI) adjusted for age, sex, neighborhood socioeconomic status, diabetes, and cardiovascular disorders were calculated. RESULTS During the exposure period, 4 346 patients were diagnosed with chronic stress, 40 101 with depression, and 1 898 with both. The average age at baseline was around 40 years in all groups. In the fully adjusted model, the odds ratio of Alzheimer disease was 2.45 (99% CI 1.22-4.91) in patients with chronic stress, 2.32 (99% CI 1.85-2.90) in patients with depression, and 4.00 (99% CI 1.67-9.58) in patients with chronic stress and depression. The odds ratio of mild cognitive impairment was 1.87 (99% CI 1.20-2.91) in patients with chronic stress, 2.85 (99% CI 2.53-3.22) in patients with depression, and 3.87 (99% CI 2.39-6.27) in patients with both. When other dementia was analyzed, the odds ratio was significant only in patients with depression, 2.39 (99% CI 1.92-2.96). CONCLUSIONS Documented chronic stress increased the risk of mild cognitive impairment and Alzheimer disease. The same was seen with depression. The novel finding is the potential additive effect of chronic stress to depression, on risk of MCI and AD.
Collapse
Affiliation(s)
- Johanna Wallensten
- Department of Clinical Sciences, Danderyd Hospital, 18288, Stockholm, Sweden.
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden.
| | - Gunnar Ljunggren
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Anna Nager
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Caroline Wachtler
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Predrag Petrovic
- Center for Cognitive Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Cognitive and Computational Neurosceince (CCNP), Karolinska Institutet, Stockholm, Sweden
| | - Axel C Carlsson
- Academic Primary Health Care Centre, Solnavägen 1E, 104 31, Stockholm, Sweden
- Division of Family Medicine and Primary Health Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177, Stockholm, Sweden
| |
Collapse
|
7
|
Kozlowski T, Bargiel W, Grabarczyk M, Skibinska M. Peripheral S100B Protein Levels in Five Major Psychiatric Disorders: A Systematic Review. Brain Sci 2023; 13:1334. [PMID: 37759935 PMCID: PMC10527471 DOI: 10.3390/brainsci13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Five major psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, autistic spectrum disorder, and attention-deficit/hyperactivity disorder, show a shared genetic background and probably share common pathobiological mechanisms. S100B is a calcium-binding protein widely studied in psychiatric disorders as a potential biomarker. Our systematic review aimed to compare studies on peripheral S100B levels in five major psychiatric disorders with shared genetic backgrounds to reveal whether S100B alterations are disease-specific. EMBASE, Web of Science, and PubMed databases were searched for relevant studies published until the end of July 2023. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA) guidelines. Overall, 1215 publications were identified, of which 111 full-text articles were included in the systematic review. Study designs are very heterogeneous, performed mostly on small groups of participants at different stages of the disease (first-episode or chronic, drug-free or medicated, in the exacerbation of symptoms or in remission), and various clinical variables are analyzed. Published results are inconsistent; most reported elevated S100B levels across disorders included in the review. Alterations in S100B peripheral levels do not seem to be disease-specific.
Collapse
Affiliation(s)
- Tomasz Kozlowski
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Weronika Bargiel
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maksymilian Grabarczyk
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maria Skibinska
- Protein Biomarkers Unit, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Malan L, van Wyk R, von Känel R, Ziemssen T, Vilser W, Nilsson PM, Magnusson M, Jujic A, Mak D, Steyn F, Malan NT. The chronic stress risk phenotype mirrored in the human retina as a neurodegenerative condition. Stress 2023:1-43. [PMID: 37154816 DOI: 10.1080/10253890.2023.2210687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The brain is the key organ that orchestrates the stress response which translates to the retina. The retina is an extension of the brain and retinal symptoms in subjects with neurodegenerative diseases substantiated the eye as a window to the brain. The retina is used in this study to determine whether chronic stress reflects neurodegenerative signs indicative of neurodegenerative conditions. A 3-year prospective cohort (n = 333; aged 46 ± 9 years) was stratified into stress-phenotype cases (n = 212) and controls (n = 121) by applying the Malan stress-phenotype index. Neurodegenerative risk markers included ischemia (astrocytic S100 calcium-binding protein B/S100B); 24h blood pressure, proteomics; inflammation (tumor-necrosis-factor-α/TNF-α); neuronal damage (neuron-specific-enolase); anti-apoptosis of retinal-ganglion-cells (beta-nerve-growth-factor), astrocytic activity (glial-fibrillary-acidic-protein); hematocrit (viscosity) and retinal follow-up data [vessels; stress-optic-neuropathy]. Stress-optic-neuropathy risk was calculated from two indices: a newly derived diastolic-ocular-perfusion-pressure cut-point ≥68 mmHg relating to the stress-phenotype; combined with an established cup-to-disc ratio cut-point ≥0.3. Higher stress-optic-neuropathy (39% vs. 17%) and hypertension (73% vs. 16%) prevalence was observed in the stress-phenotype cases vs. controls. Elevated diastolic-ocular-perfusion-pressure, indicating hypoperfusion, was related to arterial narrowing and trend for ischemia increases in the stress-phenotype. Ischemia in the stress-phenotype at baseline, follow-up and 3-yr changes was related to consistent inflammation (TNF-α and cytokine-interleukin-17-receptor-A), neuron-specific-enolase increases, consistent apoptosis (chitinase 3-like-1, low beta-nerve-growth-factor), glial-fibrillary-acidic-protein decreases, elevated viscosity, vein widening as risk marker of endothelial dysfunction in the blood-retinal-barrier, lower vein count, and elevated stress-optic-neuropathy. The stress-phenotype and related neurodegenerative signs of ongoing brain ischemia, apoptosis and endothelial dysfunction compromised blood-retinal-barrier permeability and optic nerve integrity. In fact, the stress-phenotype could identify persons at high risk of neurodegeneration to indicate a neurodegenerative condition.
Collapse
Affiliation(s)
- Leoné Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| | - Roelof van Wyk
- Surgical Ophthalmologist; 85 Peter Mokaba Street, Potchefstroom, South Africa
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Laboratory Dresden, University Hospital Carl Gustav Carus; Technische Universität Dresden, Germany
| | - Walthard Vilser
- Institute of Biomedical Engineering and informatics; Technical University Ilmenau, Germany
- Department of Pediatrics and Adolescent Medicine, Section Neonatalogy; University Hospital, Jena, Germany
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
- Hypertension in Africa Research Team (HART); North-West University, Potchefstroom, South Africa
- Department of Cardiology; Skåne University Hospital, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Malmö Sweden
| | - Amra Jujic
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Daniel Mak
- Centre for Regenerative Medicine and Health; Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, People's Republic of China
| | - Faans Steyn
- Statistical Consultation Services; North-West University, Potchefstroom, South Africa
| | - Nico T Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
9
|
Parekh SV, Adams LO, Barkell GA, Lysle DT. MDMA administration attenuates hippocampal IL-β immunoreactivity and subsequent stress-enhanced fear learning: An animal model of PTSD. Brain Behav Immun Health 2022; 26:100542. [DOI: 10.1016/j.bbih.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
|