1
|
Zhang X, van Greevenbroek MMJ, Scheijen JLJM, Eussen SJPM, Kelly J, Stehouwer CDA, Schalkwijk CG, Wouters K. Fasting plasma methylglyoxal concentrations are associated with higher numbers of circulating intermediate and non-classical monocytes but with lower activation of intermediate monocytes: the Maastricht Study. J Endocrinol Invest 2025; 48:1257-1268. [PMID: 39847265 PMCID: PMC12049376 DOI: 10.1007/s40618-025-02536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
PURPOSE Elevated methylglyoxal (MGO) levels and altered immune cell responses are observed in diabetes. MGO is thought to modulate immune cell activation. The current study investigated whether fasting or post-glucose-load plasma MGO concentrations are associated with circulating immune cell counts and activation in a large cohort study. METHODS 696 participants of The Maastricht Study (age 60.3 ± 8.4 years, 51.9% women) underwent an oral glucose tolerance test (OGTT). Fasting and post-OGTT plasma MGO concentrations were measured using mass spectrometry. Numbers and activation of circulating immune cells at fasting state were quantified using flow cytometry. Activation scores were calculated by averaging individual marker z-scores for neutrophils (CD11b, CD11c, CD16) and classical, intermediate, and non-classical monocytes (CD11b, CD11c, CX3XR1, HLA-DR). Associations were analysed using multiple linear regression adjusted for potential confounders. Stratified analyses were performed for glucose metabolism status for associations between plasma MGO levels and immune cell counts. RESULTS Higher fasting plasma MGO concentrations were significantly associated with higher numbers of intermediate (β = 0.09 [95%CI 0.02; 0.17]) and non-classical monocytes (0.08 [0.002; 0.15]), but with lower activation scores for the intermediate monocytes (-0.14 [-0.22; -0.06]). Stratified analyses showed that positive associations between fasting plasma MGO levels and numbers of intermediate and non-classical monocytes appear only in participants with type 2 diabetes. Post-OGTT plasma MGO concentrations were not consistently associated with immune cells counts or activation. CONCLUSION Higher fasting plasma MGO concentrations are associated with higher intermediate and non-classical monocyte counts but with lower activation of intermediate monocytes.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, 6229HA, the Netherlands
- CAPHRI School for Care and Public Health Research Unit, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Jaycey Kelly
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6229ER, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, the Netherlands.
| |
Collapse
|
2
|
Manfredelli D, Pariano M, Costantini C, Graziani A, Bozza S, Romani L, Puccetti P, Talesa VN, Antognelli C. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein S1 Induces Methylglyoxal-Derived Hydroimidazolone/Receptor for Advanced Glycation End Products (MG-H1/RAGE) Activation to Promote Inflammation in Human Bronchial BEAS-2B Cells. Int J Mol Sci 2023; 24:14868. [PMID: 37834316 PMCID: PMC10573269 DOI: 10.3390/ijms241914868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19) is associated with a hyperinflammatory response. The mechanisms of SARS-CoV-2-induced inflammation are scantly known. Methylglyoxal (MG) is a glycolysis-derived byproduct endowed with a potent glycating action, leading to the formation of advanced glycation end products (AGEs), the main one being MG-H1. MG-H1 exerts strong pro-inflammatory effects, frequently mediated by the receptor for AGEs (RAGE). Here, we investigated the involvement of the MG-H1/RAGE axis as a potential novel mechanism in SARS-CoV-2-induced inflammation by resorting to human bronchial BEAS-2B and alveolar A549 epithelial cells, expressing different levels of the ACE2 receptor (R), exposed to SARS-CoV-2 spike protein 1 (S1). Interestingly, we found in BEAS-2B cells that do not express ACE2-R that S1 exerted a pro-inflammatory action through a novel MG-H1/RAGE-based pathway. MG-H1 levels, RAGE and IL-1β expression levels in nasopharyngeal swabs from SARS-CoV-2-positive and -negative individuals, as well as glyoxalase 1 expression, the major scavenging enzyme of MG, seem to support the results obtained in vitro. Altogether, our findings reveal a novel mechanism involved in the inflammation triggered by S1, paving the way for the study of the MG-H1/RAGE inflammatory axis in SARS-CoV-2 infection as a potential therapeutic target to mitigate COVID-19-associated pathogenic inflammation.
Collapse
Affiliation(s)
- Dominga Manfredelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| | - Marilena Pariano
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| | - Claudio Costantini
- Department of Medicine and Surgery, Pathology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (C.C.); (L.R.)
| | - Alessandro Graziani
- Department of Medicine and Surgery, Microbiology and Clinical Microbiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (A.G.); (S.B.)
| | - Silvia Bozza
- Department of Medicine and Surgery, Microbiology and Clinical Microbiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (A.G.); (S.B.)
| | - Luigina Romani
- Department of Medicine and Surgery, Pathology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (C.C.); (L.R.)
| | - Paolo Puccetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (D.M.); (M.P.); (V.N.T.)
| |
Collapse
|
3
|
de Castro MV, Silva MVR, Naslavsky MS, Scliar MO, Nunes K, Passos-Bueno MR, Castelli EC, Magawa JY, Adami FL, Moretti AIS, de Oliveira VL, Boscardin SB, Cunha-Neto E, Kalil J, Jouanguy E, Bastard P, Casanova JL, Quiñones-Vega M, Sosa-Acosta P, Guedes JDS, de Almeida NP, Nogueira FCS, Domont GB, Santos KS, Zatz M. The oldest unvaccinated Covid-19 survivors in South America. Immun Ageing 2022; 19:57. [PMID: 36384671 PMCID: PMC9666972 DOI: 10.1186/s12979-022-00310-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.
Collapse
Affiliation(s)
- Mateus V de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Monize V R Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Erick C Castelli
- Department of Pathology, School of Medicine, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jhosiene Y Magawa
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Flávia L Adami
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana I S Moretti
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
| | - Vivian L de Oliveira
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
| | - Silvia B Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália P de Almeida
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Keity S Santos
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|