1
|
Claus J, ten Doesschate T, Taks E, Debisarun PA, Smits G, van Binnendijk R, van der Klis F, Verhagen LM, de Jonge MI, Bonten MJM, Netea MG, van de Wijgert JHHM. Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data. Vaccines (Basel) 2024; 12:691. [PMID: 38932420 PMCID: PMC11209274 DOI: 10.3390/vaccines12060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
SARS-CoV-2 infections elicit antibodies against the viral spike (S) and nucleocapsid (N) proteins; COVID-19 vaccines against the S-protein only. The BCG-Corona trial, initiated in March 2020 in SARS-CoV-2-naïve Dutch healthcare workers, captured several epidemic peaks and the introduction of COVID-19 vaccines during the one-year follow-up. We assessed determinants of systemic anti-S1 and anti-N immunoglobulin type G (IgG) responses using trial data. Participants were randomised to BCG or placebo vaccination, reported daily symptoms, SARS-CoV-2 test results, and COVID-19 vaccinations, and donated blood for SARS-CoV-2 serology at two time points. In the 970 participants, anti-S1 geometric mean antibody concentrations (GMCs) were much higher than anti-N GMCs. Anti-S1 GMCs significantly increased with increasing number of immune events (SARS-CoV-2 infection or COVID-19 vaccination): 104.7 international units (IU)/mL, 955.0 IU/mL, and 2290.9 IU/mL for one, two, and three immune events, respectively (p < 0.001). In adjusted multivariable linear regression models, anti-S1 and anti-N log10 concentrations were significantly associated with infection severity, and anti-S1 log10 concentration with COVID-19 vaccine type/dose. In univariable models, anti-N log10 concentration was also significantly associated with acute infection duration, and severity and duration of individual symptoms. Antibody concentrations were not associated with long COVID or long-term loss of smell/taste.
Collapse
Affiliation(s)
- Juana Claus
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| | - Thijs ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
- Department of Internal Medicine, Jeroen Bosch Ziekenhuis, 5223 GZ Hertogenbosch, The Netherlands
| | - Esther Taks
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
| | - Priya A. Debisarun
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
| | - Gaby Smits
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Rob van Binnendijk
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Fiona van der Klis
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Lilly M. Verhagen
- Department of Paediatric Infectious Diseases and Immunology, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marien I. de Jonge
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| | - Mihai G. Netea
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53113 Bonn, Germany
| | - Janneke H. H. M. van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| |
Collapse
|
2
|
Huang PC, Lin TY, Chen CC, Wang SW, Tsai BY, Tsai PJ, Tu YF, Ko WC, Cheng CM, Shieh CC, Liu CC, Shen CF. Age and prior vaccination determine the antibody level in children with primary SARS-CoV-2 Omicron infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1187-1197. [PMID: 37739902 DOI: 10.1016/j.jmii.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection relies on immunity generated after primary infection. However, humoral immunity following primary infection with the Omicron variant is not well understood. METHODS We prospectively recruited children <19 years with virologically-confirmed SARS-CoV-2 infection at National Cheng Kung University Hospital from February 2022 to September 2022 during the first wave of Omicron BA.2 outbreak in Taiwan. Serum samples were collected one month after acute infection to measure anti-spike protein receptor binding domain antibody levels and surrogate virus neutralizing antibody (NAb) levels against wild type disease and variants. RESULTS Of the 164 patients enrolled, most were under 5 years (65.2%) with a diagnosis of upper respiratory tract infection. Children under 6 months with maternal coronavirus disease 2019 (COVID-19) vaccination had higher levels of both anti-SARS-CoV-2 spike antibody (119.0 vs 27.4 U/ml, p < 0.05) and anti-wild type NAb (56.9% vs 27.6% inhibition, p = 0.001) than those without. Children aged 5-12 years with prior vaccination had higher anti-spike antibody, anti-wild type, and anti-Omicron BA.2 NAb levels than those without (all p < 0.05). In previously naïve children without maternal or self-vaccination, those 6 months to 2 years had the highest antibody levels. Multivariable linear regression analysis showed age was the only independent factor associated with antibody level. CONCLUSIONS In our study, children aged 6 months to 2 years have the highest antibody responses to SARS-CoV-2 Omicron variant infection. Age and prior vaccination are the main factors influencing the immunogenicity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pin-Chen Huang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Ting-Yu Lin
- Department of Pediatrics, Kuo General Hospital, Tainan, Taiwan
| | - Chih-Chia Chen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Shih-Wei Wang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Bo-Yang Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 70101, Taiwan, ROC; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Chi-Chang Shieh
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
3
|
Pérez-Juárez H, Serrano-Vázquez A, Godínez-Alvarez H, González E, Rojas-Velázquez L, Moran P, Portillo-Bobadilla T, Ramiro M, Hernández E, Lau C, Martínez M, Padilla MDLÁ, Zaragoza ME, Taboada B, Palomares LA, López S, Alagón A, Arias CF, Ximénez C. Longitudinal anti-SARS-CoV-2 antibody immune response in acute and convalescent patients. Front Cell Infect Microbiol 2023; 13:1239700. [PMID: 37743860 PMCID: PMC10515199 DOI: 10.3389/fcimb.2023.1239700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Despite global efforts to assess the early response and persistence of SARS-CoV-2 antibodies in patients infected with or recovered from COVID-19, our understanding of the factors affecting its dynamics remains limited. This work aimed to evaluate the early and convalescent immunity of outpatients infected with SARS-CoV-2 and to determine the factors that affect the dynamics and persistence of the IgM and IgG antibody response. Seropositivity of volunteers from Mexico City and the State of Mexico, Mexico, was evaluated by ELISA using the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein for 90 days, at different time points (1, 15, 45, 60, and 90 days) after molecular diagnosis (RT-qPCR). Gender, age range, body mass index (BMI), comorbidities, and clinical spectrum of disease were analyzed to determine associations with the dynamics of anti-SARS-CoV-2 antibodies. On 90 days post-infection, individuals with moderate and asymptomatic disease presented the lowest levels of IgM, while for IgG, at the same time, the highest levels occurred with mild and moderate disease. The IgM and IgG levels were related to the clinical spectrum of disease, BMI, and the presence/absence of comorbidities through regression trees. The results suggest that the dynamics of anti-SARS-CoV-2 IgM and IgG antibodies in outpatients could be influenced by the clinical spectrum of the disease. In addition, the persistence of antibodies against SARS-CoV-2 could be related to the clinical spectrum of the disease, BMI, and the presence/absence of comorbidities.
Collapse
Affiliation(s)
- Horacio Pérez-Juárez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Estancias Posdoctorales por México-Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Mexico City, Mexico
| | - Angélica Serrano-Vázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Godínez-Alvarez
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico State, Mexico
| | - Enrique González
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Liliana Rojas-Velázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Moran
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Manuel Ramiro
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Eric Hernández
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clara Lau
- Laboratorios de Análisis Clínicos e Imagenología, Biomédica de Referencia, S.A.P.I. DE C.V., Mexico City, Mexico
| | - Marcela Martínez
- Laboratorios de Análisis Clínicos e Imagenología, Biomédica de Referencia, S.A.P.I. DE C.V., Mexico City, Mexico
| | - Ma. de los Ángeles Padilla
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martha E. Zaragoza
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Blanca Taboada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Laura A. Palomares
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Carlos F. Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Cecilia Ximénez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Gerhards C, Thiaucourt M, Hetjens M, Haselmann V, Neumaier M, Kittel M. Heterologous Vector-mRNA Based SARS-CoV-2 Vaccination Strategy Appears Superior to a Homologous Vector-Based Vaccination Scheme in German Healthcare Workers Regarding Humoral SARS-CoV-2 Response Indicating a High Boosting Effect by mRNA Vaccines. Vaccines (Basel) 2023; 11:701. [PMID: 36992285 PMCID: PMC10054089 DOI: 10.3390/vaccines11030701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Longitudinal humoral SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) immunity for up to 15 months due to vaccination, the efficacy of vaccination strategies (homologous, vector-vector versus heterologous, vector-mRNA), the influence of vaccination side effects, and the infection rate in German healthcare workers need to be investigated. METHODS In this study, 103 individuals vaccinated against SARS-CoV-2 were enrolled to examine their anti-SARS-CoV-2 anti-N- and anti-RBD/S1-Ig levels. A total of 415 blood samples in lithium heparin tubes were prospectively obtained, and a structured survey regarding medical history, type of vaccine, and vaccination reactions was conducted. RESULTS All participants demonstrated a humoral immune response, among whom no values decreased below the positivity cutoff. Five to six months after the third vaccination, three participants showed anti-RBD/S1 antibodies of less than 1000 U/mL. We observed higher levels for heterologous mRNA-/vector-based combinations compared to pure vector-based vaccination after the second vaccination, which is harmonized after a third vaccination with the mRNA-vaccine only in both cohorts. The incidence of vaccine breakthrough in a highly exposed cohort was 60.3%. CONCLUSION Sustained long-term humoral immunity was observed, indicating the superiority of a heterologous mRNA-/vector-based combination compared to pure vector-based vaccination. There was longevity of anti-RBD/S1 antibodies of at least 4 and up to 7 months without external stimulus. Regarding vaccination reactogenity, the occurrence of local symptoms as pain at the injection site was increased after the first mRNA application compared to the vector-vector cohort with a general decrease in adverse events at later vaccination time points. Overall, a correlation between the humoral vaccination response and vaccination side effects was not observed. Despite the high prevalence of vaccine breakthroughs, these only occurred in the later course of the study when more infectious variants, which are, however, associated with milder courses, were present. These results provide insights into vaccine-related serologic responses, and the study should be expanded using additional vaccine doses and novel variants in the future.
Collapse
Affiliation(s)
- Catharina Gerhards
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Theodor Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Margot Thiaucourt
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Theodor Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Michael Hetjens
- Department of Biomedical Informatics, Center for Preventive Medicine and Digital Health Baden-Württemberg, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Verena Haselmann
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Theodor Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Theodor Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Maximilian Kittel
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, Theodor Kutzer Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Liu Z, Alexander JL, Lin KW, Ahmad T, Pollock KM, Powell N. Infliximab and Tofacitinib Attenuate Neutralizing Antibody Responses Against SARS-CoV-2 Ancestral and Omicron Variants in Inflammatory Bowel Disease Patients After 3 Doses of COVID-19 Vaccine. Gastroenterology 2023; 164:300-303.e3. [PMID: 36270334 PMCID: PMC9578965 DOI: 10.1053/j.gastro.2022.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James L Alexander
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom, and, Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kathy Weitung Lin
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tariq Ahmad
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Katrina M Pollock
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nick Powell
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom, and, Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
6
|
Ao G, Li T, Wang Y, Tran C, Gao M, Chen M. The effect of SARS-CoV-2 double vaccination on the outcomes of hemodialysis patients with COVID-19: A meta-analysis. J Infect 2023; 86:e43-e45. [PMID: 36174838 PMCID: PMC9511879 DOI: 10.1016/j.jinf.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Guangyu Ao
- Department of Nephrology, Chengdu First People's Hospital, No.18 Wanxiang North Road, High-tech District, Chengdu, Sichuan 610095, China
| | - Toni Li
- School of Medicine, Queen's University, Kingston, Canada
| | - Yushu Wang
- Chengdu West China Clinical Research Center, Chengdu, Sichuan, China
| | - Carolyn Tran
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Ming Gao
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China.
| | - Min Chen
- Department of Nephrology, Chengdu First People's Hospital, No.18 Wanxiang North Road, High-tech District, Chengdu, Sichuan 610095, China.
| |
Collapse
|
7
|
Nakagama S, Nakagama Y, Komase Y, Kudo M, Imai T, Tshibangu-Kabamba E, Nitahara Y, Kaku N, Kido Y. Age-adjusted impact of prior COVID-19 on SARS-CoV-2 mRNA vaccine response. Front Immunol 2023; 14:1087473. [PMID: 36742291 PMCID: PMC9892832 DOI: 10.3389/fimmu.2023.1087473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
More people with a history of prior infection are receiving SARS-CoV-2 vaccines. Understanding the level of protection granted by 'hybrid immunity', the combined response of infection- and vaccine-induced immunity, may impact vaccination strategies through tailored dosing. A total of 36 infected ('prior infection') and 33 SARS-CoV-2 'naïve' individuals participated. Participants provided sera six months after completing a round of BNT162b2 vaccination, to be processed for anti-spike antibody measurements and the receptor binding domain-ACE2 binding inhibition assays. The relationships between antibody titer, groups and age were explored. Anti-spike antibody titers at 6 months post-vaccination were significantly higher, reaching 13- to 17-fold, in the 'prior infection' group. Semi-log regression models showed that participants with 'prior infection' demonstrated higher antibody titer compared with the 'naïve' even after adjusting for age. The enhancement in antibody titer attributable to positive infection history increased from 8.9- to 9.4- fold at age 30 to 19- to 32-fold at age 60. Sera from the 'prior infection' group showed higher inhibition capacity against all six analyzed strains, including the Omicron variant. Prior COVID-19 led to establishing enhanced humoral immunity at 6 months after vaccination. Antibody fold-difference attributed to positive COVID-19 history increased with age, possibly because older individuals are prone to symptomatic infection accompanied by potentiated immune responses. While still pending any modifications of dosing recommendations (i.e. reduced doses for individuals with prior infection), our observation adds to the series of real-world data demonstrating the enhanced and more durable immune response evoked by booster vaccinations following prior infection.
Collapse
Affiliation(s)
- Sachie Nakagama
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yu Nakagama
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuko Komase
- Department of Respiratory Internal Medicine, St. Marianna University, Yokohama Seibu Hospital, Yokohama, Japan
| | - Masaharu Kudo
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takumi Imai
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Evariste Tshibangu-Kabamba
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuko Nitahara
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Natsuko Kaku
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutoshi Kido
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.,Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Alexopoulos H, Trougakos IP, Dimopoulos MA, Terpos E. Clinical usefulness of testing for severe acute respiratory syndrome coronavirus 2 antibodies. Eur J Intern Med 2023; 107:7-16. [PMID: 36379820 PMCID: PMC9647045 DOI: 10.1016/j.ejim.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
In the COVID-19 pandemic era, antibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has proven an invaluable tool and herein we highlight some of the most useful clinical and/or epidemiological applications of humoral immune responses recording. Anti-spike circulating IgGs and SARS-CoV-2 neutralizing antibodies can serve as predictors of disease progression or disease prevention, whereas anti-nucleocapsid antibodies can help distinguishing infection from vaccination. Also, in the era of immunotherapies we address the validity of anti-SARS-CoV-2 antibody monitoring post-infection and/or vaccination following therapies with the popular anti-CD20 monoclonals, as well as in the context of various cancers or autoimmune conditions such as rheumatoid arthritis and multiple sclerosis. Additional crucial applications include population immunosurveillance, either at the general population or at specific communities such as health workers. Finally, we discuss how testing of antibodies in cerebrospinal fluid can inform us on the neurological complications that often accompany COVID-19.
Collapse
Affiliation(s)
- Harry Alexopoulos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, 11528, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, 11528, Greece.
| |
Collapse
|