1
|
Kabir SR, Alam MT, Uddin MB. Asparagus racemosus silver chloride nanoparticles and Kaempferia rotunda mediated silver/silver chloride nanoparticles inhibit human hepatocellular and lung cancer cell lines. Biochem Biophys Rep 2024; 40:101818. [PMID: 39290346 PMCID: PMC11406076 DOI: 10.1016/j.bbrep.2024.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Recently, we have reported that biogenic silver/silver chloride nanoparticles from Asparagus racemosus (A. racemosus-AgCl-NPs) and Kaempferia rotunda (K. rotunda-Ag/AgCl-NPs) inhibited different cancer cells by inducing apoptosis and several genes alteration. Here for the first time, we assessed the effects of these two nanoparticles on human lung (A549) and hepatocellular (SMMC-7721) carcinoma cell lines. A. racemosus-AgCl-NPs and K. rotunda-Ag/AgCl-NPs inhibited A549 cell growth with IC50 values of 22.7 and 59.7 μg/ml and the calculated IC50 values for SMMC-7721 cell were 89.3 and 126.3 μg/ml, respectively. A. racemosus-AgCl-NPs exerted higher cytotoxicity against HEK293T cells than doxorubicin and K. rotunda-Ag/AgCl-NPs. Both the nanoparticles induced apoptosis in A549 and SMMC-7721 cell lines. A significant rise of early apoptotic cells and late apoptotic cells was found for A549 cells after treatment with A. racemosus-AgCl-NPs and stained with FITC-annexin V/PI. Apoptosis in A549 cells was further confirmed by monitoring the alteration of the expression level of several genes using real-time PCR and cell cycle arrest by flowcytometry after treatment with A. racemosus-AgCl-NPs. The expression of STAT-3, TNFα, and EGFR genes was decreased with the increase of caspase-8, FAS, and FADD gene expression. G2/M cell cycle phase was arrested after treatment of A549 cells with A. racemosus-AgCl-NPs.
Collapse
Affiliation(s)
- Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Taufiq Alam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Belal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
2
|
Haque MU, Alam AHMK, Islam Shovon MT, Sujon KM, Hasan Maruf MM, Kabir SR, Faisal Hoque KM, Reza MA. Unveiling the apoptotic potential of antioxidant-rich Bangladeshi medicinal plant extractives and computational modeling to identify antitumor compounds. Heliyon 2024; 10:e38885. [PMID: 39492885 PMCID: PMC11531630 DOI: 10.1016/j.heliyon.2024.e38885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Nowadays, there has been a significant surge in the exploration of anticancer compounds derived from medicinal plants due to their perceived safety and efficacy. Therefore, our objective was to investigate the antioxidant and antiproliferative properties, along with the phytoconstituents, of methanol extracts from various parts of 15 selected Bangladeshi medicinal plants. Standard spectrophotometric methods and confocal microscopy were utilized to assess the antioxidant and antiproliferative potential of these extracts. Additionally, phytochemical profiling was executed through gas chromatography-mass spectrometry (GC-MS) analysis. Among the extractives, Bombax ceiba bark exhibited the highest scavenging capacity against DPPH (IC50: 10.3 ± 0.7 μg/mL) and hydroxyl (IC50: 3.9 ± 0.1 μg/mL) free radicals. Furthermore, the total antioxidants, reducing power, and polyphenols of B. ceiba bark were higher than those of other extracts. B. ceiba bark also showed significant antiproliferative capacity against MCF-7 cells (86.67 %) in the MTT assay, followed by Cocos nucifera roots (83.92 %), Bixa orellana leaves (44.09 %), and Leea macrophylla roots (25 %). Moreover, B. ceiba bark, L. macrophylla roots, C. nucifera roots, and B. orellana leaves-treated Ehrlich ascites carcinoma (EAC) cells demonstrated growth inhibition rates of 87.27 %, 80.45 %, 42.9 %, and 37.27 %, respectively. Fluorescence microscopic analysis of EAC cells treated with these extracts revealed apoptotic features such as condensed chromatin, cell shrinkage, nucleus fragmentation, and membrane blebbing compared to untreated EAC cells. The GC-MS analysis of B. ceiba bark identified 18 compounds, including various alcohols, alkenes, and esters. Additionally, a molecular docking study revealed oxalic acid, cyclohexyl dodecyl ester as the most potent compound (-6.5) active against breast cancer. In summary, our results demonstrate that B. ceiba bark possesses robust antioxidant and antiproliferative properties, along with potent antitumor compounds, which could be utilized in the treatment of carcinoma.
Collapse
Affiliation(s)
- Md Uzzal Haque
- Phytochemistry Research Laboratory, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - AHM Khurshid Alam
- Phytochemistry Research Laboratory, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Tanjil Islam Shovon
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khaled Mahmud Sujon
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Mahmudul Hasan Maruf
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kazi Md Faisal Hoque
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory (MBPSL), Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
3
|
Ruhul-Amin M, Rahman MA, Khatun N, Hasan I, Kabir SR, Asaduzzaman A. Bioactivity of biogenic silver/silver chloride nanoparticles from Maranta arundinacea rhizome extract: Antibacterial and antioxidant properties with anticancer potential against Ehrlich ascites carcinoma and human breast cancer cell lines. Heliyon 2024; 10:e39493. [PMID: 39502215 PMCID: PMC11535985 DOI: 10.1016/j.heliyon.2024.e39493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This study explores the synthesis and characterization of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Maranta arundinacea rhizome extract and evaluates their bioactivities, including antibacterial, antioxidant, and anticancer potentials. Methods The synthesis of Ag/AgCl-NPs was initially confirmed by a color change and a sharp peak at 463 nm in UV-visible spectroscopy. Further characterization was conducted using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). Antibacterial properties were checked against four pathogenic bacteria (Shigella boydii, Escherichia coli, Shigella dysenteriae, and Staphylococcus aureus), and antioxidant activities were assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid) assay. In addition, the anticancer potential was evaluated in vitro using MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) colorimetric assay and in vivo using the mouse models. Finally, toxicity was determined by employing the brine shrimp nauplii lethality assay. Results Ag/AgCl-NPs most effectively inhibited the growth of Staphylococcus aureus, showing maximum zone of inhibition and 7 μg/mL of minimum inhibitory concentration (MIC), and prevented the biofilm formation by Escherichia coli at 40 μg/mL. They displayed antioxidant activities against DPPH and ABTS with IC50 values of 90.65 and 24.34 μg/mL, respectively. In vitro, they inhibited 61.96 % EAC and 49.63 % MCF-7 cells growth at 32 and 128 μg/mL, respectively. Subsequently, inhibition rates of EAC cells growth in mice were measured as 38.30 %, 57.38 %, and 31.81 % after employing 2.5, 5, and 10 mg/kg/day of Ag/AgCl-NPs, respectively. Moreover, Ag/AgCl-NPs treated mice were found to carry more apoptotic EAC cells with distorted morphology. Treated mice showed decreased tumor weight, increased mean survival time, and a lifespan increase of up to 30 %, with improved hematological parameters. Later, Ag/AgCl-NPs exhibited moderate toxicity with an LC50 value of 208.41 μg/mL in brine shrimp nauplii lethality assay. Conclusion The promising antibacterial, antioxidant, and anticancer activities along with mild toxicity suggest the potential biomedical uses of Maranta arundinacea rhizome extract-mediated Ag/AgCl-NPs.
Collapse
Affiliation(s)
- Md. Ruhul-Amin
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, Trust University, Barisal, 8200, Bangladesh
| | - Md. Abdur Rahman
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Nisa Khatun
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A.K.M. Asaduzzaman
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
4
|
Wintachai P, Jaroensawat N, Harding P, Wiwasuku T, Mitsuwan W, Septama AW. Antibacterial and antibiofilm efficacy of Solanum lasiocarpum root extract synthesized silver/silver chloride nanoparticles against Staphylococcus haemolyticus associated with bovine mastitis. Microb Pathog 2024; 192:106724. [PMID: 38834135 DOI: 10.1016/j.micpath.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Staphylococcus haemolyticus is a cause of bovine mastitis, leading to inflammation in the mammary gland. This bacterial infection adversely affects animal health, reducing milk quality and yield. Its emergence has been widely reported, representing a significant economic loss for dairy farms. Interestingly, S. haemolyticus exhibits higher levels of antimicrobial resistance than other coagulase-negative Staphylococci. In this study, we synthesized silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Solanum lasiocarpum root extract and evaluated their antibacterial and antibiofilm activities against S. haemolyticus. The formation of the Ag/AgCl-NPs was confirmed using UV-visible spectroscopy, which revealed maximum absorption at 419 nm. X-ray diffraction (XRD) analysis demonstrated the crystalline nature of the Ag/AgCl-NPs, exhibiting a face-centered cubic lattice. Fourier transform infrared (FT-IR) spectroscopy elucidated the functional groups potentially involved in the Ag/AgCl-NPs synthesis. Transmission electron microscopy (TEM) analysis revealed that the average particle size of the Ag/AgCl-NPs was 10 nm. Antimicrobial activity results indicated that the minimum inhibitory concentration (MIC) and maximum bactericidal concentration (MBC) of the Ag/AgCl-NPs treatment were 7.82-15.63 μg/mL towards S. haemolyticus. Morphological changes in bacterial cells treated with the Ag/AgCl-NPs were observed under scanning electron microscopy (SEM). The Ag/AgCl-NPs reduced both the biomass of biofilm formation and preformed biofilm by approximately 20.24-94.66 % and 13.67-88.48 %. Bacterial viability within biofilm formation and preformed biofilm was reduced by approximately 21.56-77.54 % and 18.9-71.48 %, respectively. This study provides evidence of the potential of the synthesized Ag/AgCl-NPs as an antibacterial and antibiofilm agent against S. haemolyticus.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand.
| | - Nannapat Jaroensawat
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Phimphaka Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Theanchai Wiwasuku
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; One Health Research Center, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand; Center of Excellence in Innovation of Essential Oil and Bio-active Compound, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| |
Collapse
|
5
|
Hridoy HM, Hossain MP, Ali MH, Hasan I, Uddin MB, Alam MT, Kabir SR. Alocasia macrorrhiza rhizome lectin inhibits growth of pathogenic bacteria and human lung cancer cell in vitro and Ehrlich ascites carcinoma cell in vivo in mice. Protein Expr Purif 2024; 219:106484. [PMID: 38614377 DOI: 10.1016/j.pep.2024.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 μg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 μg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.
Collapse
Affiliation(s)
- Hossain Mohammad Hridoy
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Pervez Hossain
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Hasan Ali
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Belal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Taufiq Alam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
6
|
Mallick S, Pradhan N. Bio-fabrication of silver nanoparticles using Commelina erecta, L.: a mechanistic approach on synthesis, optimization, antibacterial, and antioxidant potential. Bioprocess Biosyst Eng 2024; 47:495-507. [PMID: 38467928 DOI: 10.1007/s00449-024-02980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The ongoing exploration of economical, sustainable, and environment-friendly methods for synthesizing monodisperse colloidal metal nanoparticles is growing day by day due to their potential application in various fields. The use of plant derivatives in nanoparticle synthesis and their suitability as sustainable catalysts have emerged as significant areas of research. In this study, silver nanoparticles were synthesized using an aqueous extract obtained from the commonly found weed Commelina erecta, L. Extensive study is conducted to optimize various synthesis parameters such as pH, reducing agent concentration, silver nitrate concentration, and temperature. The plant extract utilized in the synthesis process contained variety of antioxidants, including malic acid, phenol, benzoic acid, and catechol, which played a crucial role in both reduction and capping during the synthesis process, thereby making them suitable for biomedical applications. The optimized synthesis process yielded silver nanoparticles with a particle size of 16.2 ± 3.1 nm. These nanoparticles exhibited excellent stability and demonstrated remarkable antibacterial activity compared to the standard antibacterial agent, streptomycin. In addition, the silver nanoparticles displayed promising antioxidant activity attributed to the presence of antioxidant functional groups on their surface. This study reports, for the first time, the synthesis of silver nanoparticles using antioxidant compounds present in C. erecta, L. plant extract. The antioxidant compounds identified through GC-MS belong to phenols, phenolic acids, and carboxylic acid groups. Furthermore, the exceptional antimicrobial and antioxidant properties exhibited by the synthesized silver nanoparticles offer new possibilities for their potential applications.
Collapse
Affiliation(s)
- Swastika Mallick
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nilotpala Pradhan
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Afzali M, Sadat Shandiz SA, Keshtmand Z. Preparation of biogenic silver chloride nanoparticles from microalgae Spirulina Platensis extract: anticancer properties in MDA-MB231 breast cancer cells. Mol Biol Rep 2024; 51:62. [PMID: 38170277 DOI: 10.1007/s11033-023-08970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Breast carcinoma is the second leading cause of cancer related-deaths among women. Given its high incidence and mortality rates, searching for innovative treatments represents a formidable challenge within the medical and pharmaceutical industries. This study delves into the preparation, characterization, and anticancer properties of silver chloride nanoparticles (AgCLNPs) as a novel therapeutic approach for breast cancer cells, employing a biological synthesis method. METHODS This investigation, utilized spirulina platensis extract to synthesize silver chloride nanoparticles (AgCLNPs-SP). The formation, size, and structure of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-ray crystallography (XRD), and Energy-dispersive X-ray spectroscopy (EDS) analysis. Additionally, the apoptotic and anticancer properties of AgCLNPs-SP were thoroughly examined. RESULTS The results, revealed AgCLNPs-SP to exhibit a spherical, morphology with a size range of 40-70 nm, primarily silver and chlorine. The dose-dependent response of AgCLNP-SP against MDA-MB231 cells was ascertained using the MTT Assay, with an IC50 value of 34 µg/mL. Furthermore, the Annexin V-FITC/ PI apoptosis assay demonstrated a significant proportion of early apoptosis (43.67%) in MDA-MB231 cells. This apoptosis process was substantiated by up-regulation in mRNA expression levels of P53, CAD, and Bax genes, alongside a down-regulation of the of bcl2 gene expression. Additionally, an augmented production of reactive oxygen species (ROS), cell cycle analysis, Hoechst staining assay, and evaluated levels of Caspase - 3, -8 and - 9 were observed in AgCLNPs-SP-treated MDA_MB231 cancer cells. CONCLUSIONS In conclusion, the results suggest that AgCLNPs-SP may be a promising agent for treating breast cancer.
Collapse
Affiliation(s)
- Mahsa Afzali
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Nurujjaman M, Mashhoor T, Pronoy TUH, Auwal A, Hasan MR, Islam SS, Hasan I, Asaduzzaman AKM, Uddin MB, Kabir SR, Islam F. Antitumor Activity of a Lectin Purified from Punica granatum Pulps against Ehrlich Ascites Carcinoma (EAC) Cells. Anticancer Agents Med Chem 2024; 24:193-202. [PMID: 38037833 DOI: 10.2174/0118715206269394231124093423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Lectins are carbohydrate-binding proteins with various pharmacological activities, such as antimicrobial, antidiabetic, antioxidant, and anticancer. Punica granatum fruit extract has traditional uses, however, the anti-cancer activity of purified lectin isolated from P. granatum pulp is yet to be reported. OBJECTIVE The goals of this study are purification, characterization of the lectin from P. granatum, and examination of the purified lectin's anticancer potential. METHODS Diethylaminoethyl (DEAE) ion-exchange chromatography was used to purify the lectin, and SDSPAGE was used to check the purity and homogeneity of the lectin. Spectrometric and chemical analysis were used to characterize the lectin. The anticancer activity of the lectin was examined using in vivo and in vitro functional assays. RESULTS A lectin, designated as PgL of 28.0 ± 1.0 kDa molecular mass, was isolated and purified from the pulps of P. granatum and the lectin contains 40% sugar. Also, it is a bivalent ion-dependent lectin and lost its 75% activity in the presence of urea (8M). The lectin agglutinated blood cells of humans and rats, and sugar molecules such as 4-nitrophenyl-α-D-manopyranoside and 2- nitrophenyl -β- D-glucopyranoside inhibited PgL's hemagglutination activity. At pH ranges of 6.0-8.0 and temperature ranges of 30°C -80°C, PgL exhibited the highest agglutination activity. In vitro MTT assay showed that PgL inhibited Ehrlich ascites carcinoma (EAC) cell growth in a dose-dependent manner. PgL exhibited 39 % and 58.52 % growth inhibition of EAC cells in the mice model at 1.5 and 3.0 mg/kg/day (i.p.), respectively. In addition, PgL significantly increased the survival time (32.0 % and 49.3 %) of EAC-bearing mice at 1.5 and 3.0 mg/kg/day doses (i.p.), respectively, in comparison to untreated EAC-bearing animals (p < 0.01). Also, PgL reduced the tumor weight of EAC-bearing mice (66.6 versus 39.13%; p < 0.01) at the dose of 3.0 mg/kg/day treatment. Furthermore, supplementation of PgL restored the haematological parameters toward normal levels deteriorated in EAC-bearing animals by the toxicity of EAC cells. CONCLUSION The results indicated that the purified lectin has anticancer activity and has the potential to be developed as an effective chemotherapy agent.
Collapse
Affiliation(s)
- Md Nurujjaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tanjila Mashhoor
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Robiul Hasan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shaikh Shohidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A K M Asaduzzaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Belal Uddin
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
9
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
10
|
Velidandi A, Sarvepalli M, Aramanda P, Amudala ML, Baadhe RR. Effect of size on physicochemical, antibacterial, and catalytic properties of Neolamarckia cadamba (burflower-tree) synthesized silver/silver chloride nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63231-63249. [PMID: 36959403 DOI: 10.1007/s11356-023-26427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 05/10/2023]
Abstract
Aqueous extract of Neolamarchia cadamba leaves were used in the synthesis of silver/silver chloride nanoparticles (Ag/AgCl NPs). Further they were separated based on their using step-wise centrifugation approach at 09,000, 12,000, and 15,000 rpm. Thus obtained NPs were characterized for their physicochemical features. NPs showed maximum absorbance at 455 nm, 415 nm, and 402 nm. All the NPs were found to be crystalline in nature with average crystallite size (nm) of 58.31, 23.43, and 09.56. Particle size distribution (nm) of NPs was observed to 435.43, 276.75, and 105.49, Surface charge (-mV) of NPs was observed to be 14.59, 23.90, and 32.17. Ag/AgCl NPs-rpm@15,000 showed antibacterial activity against Escherichia coli, coagulase-negative Staphylococci, and Staphylococcus aureus with zone of inhibition (mm) of 16.65, 13.69, and 14.02 at 50 µg per well, respectively. Ag/AgCl NPs-rpm@15,000 showed excellent catalytic activity in degradation of methyl red, methylene blue, rhodamine-B, and methyl orange dyes in the presence of sodium borohydride under 4, 6, 5, and 4 min with pseudo-first order rate constant (min-1) of 0.981 (96.4%), 0.666 (97.1%), 0.905 (98.1%), and 1.032 (96.6%), respectively. Furthermore, Ag/AgCl NPs-rpm@15,000 showed good catalytic efficiency even under different dye combinations. Total combination was degraded under 18 min.
Collapse
Affiliation(s)
- Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Mounika Sarvepalli
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prasad Aramanda
- Department of Physics, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Maha Lakshmi Amudala
- Department of Physics, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
11
|
Magazenkova DN, Skomorokhova EA, Farroukh MA, Zharkova MS, Jassem ZM, Rekina VE, Shamova OV, Puchkova LV, Ilyechova EY. Influence of Silver Nanoparticles on the Growth of Ascitic and Solid Ehrlich Adenocarcinoma: Focus on Copper Metabolism. Pharmaceutics 2023; 15:pharmaceutics15041099. [PMID: 37111584 PMCID: PMC10145613 DOI: 10.3390/pharmaceutics15041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
The link between copper metabolism and tumor progression motivated us to use copper chelators for suppression of tumor growth. We assume that silver nanoparticles (AgNPs) can be used for lowering bioavailable copper. Our assumption is based on the ability of Ag(I) ions released by AgNPs in biological media and interfere with Cu(I) transport. Intervention of Ag(I) into copper metabolism leads to the replacement of copper by silver in ceruloplasmin and the decrease in bioavailable copper in the bloodstream. To check this assumption, mice with ascitic or solid Ehrlich adenocarcinoma (EAC) were treated with AgNPs using different protocols. Copper status indexes (copper concentration, ceruloplasmin protein level, and oxidase activity) were monitored to assess copper metabolism. The expression of copper-related genes was determined by real-time PCR in the liver and tumors, and copper and silver levels were measured by FAAS. Intraperitoneal AgNPs treatment beginning on the day of tumor inoculation enhanced mice survival, reduced the proliferation of ascitic EAC cells, and suppressed the activity of HIF1α, TNF-α and VEGFa genes. Topical treatment by the AgNPs, which was started together with the implantation of EAC cells in the thigh, also enhanced mice survival, decreased tumor growth, and repressed genes responsible for neovascularization. The advantages of silver-induced copper deficiency over copper chelators are discussed.
Collapse
Affiliation(s)
- Daria N. Magazenkova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Ekaterina A. Skomorokhova
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Mohammad Al Farroukh
- Federal State Budgetary Scientific Institution, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Maria S. Zharkova
- Department of General Pathology and Pathophysiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Zena M. Jassem
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
| | - Valeria E. Rekina
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Olga V. Shamova
- Department of General Pathology and Pathophysiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ludmila V. Puchkova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Y. Ilyechova
- Research Center of Advanced Functional Materials and Laser Communication Systems, Institute of Advanced Data Transfer Systems, ITMO University, 197101 St. Petersburg, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-(921)-7605274
| |
Collapse
|
12
|
Kabir SR, Islam T, Mollah MNH. 2,4-Dipropylphloroglucinol inhibits the growth of human lung and colorectal cancer cells through induction of apoptosis. Med Oncol 2023; 40:129. [PMID: 36964397 DOI: 10.1007/s12032-023-01986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 03/26/2023]
Abstract
Scientists are finding the most effective chemotherapeutic agents for the treatment of cancer. In the present study, we evaluated the anticancer mechanism of DPPG, a derivative of DAPG (2,4-diacetylphloroglucinol), for the first time. DPPG and DAPG inhibited 83 and 59% of human colorectal cancer HCT116 cell growth at 40.0 µg/ml, and 74 and 57% of human lung cancer A549 cell growth at 10.0 µg/ml concentrations respectively. Furthermore, DPPG and DAPG inhibited 97 and 73% colony formation of the HCT116 cells at 20.0 µg/ml concentration. DPPG and DAPG induced apoptosis in the HCT116 and A549 cells that was confirmed by Hoechst 33342 and FITC-annexin V staining. This result also revealed that ROS generated in both the HCT116 and A549 cells after treatment with DPPG. However, no ROS production was observed in HCT116 and A549 cells after treatment with DAPG. Both DAPG and DPPG significantly increased the CASP3 protein expression that was detected by staining the cells with the super-view 488-CASP3 substrate. Expression of WNT1 gene was eliminated in DPPG and DAPG treated HCT116. Expression of MAPK1 gene was entirely abolished in DPPG treated cells, whereas a significant decrease was observed for DAPG. An intense band of CASP8 gene product was observed agarose gel for DPPG treated HCT116 cells than DAPG. Molecular docking simulation showed the high binding affinities (≥ 6.5 kcal/mol) of DPPG and DAPG with target proteins WNT1, MAPK1, CASP8, and CASP3 in HCT116 cells. This manuscript demonstrated that DAPG and DPPG inhibited lung and colorectal cancer cells by inducing apoptosis. DAPG and DPPG inhibited A549 and HCT116 cells growth by inducing apoptosis.
Collapse
Affiliation(s)
- Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab (Dry), Department of Statistics, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
13
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
14
|
Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties. Antibiotics (Basel) 2023; 12:antibiotics12010121. [PMID: 36671322 PMCID: PMC9855199 DOI: 10.3390/antibiotics12010121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, and yield distinct biological effects. AgNPs are capable of bypassing immune cells, staying in the system for longer periods and with a higher distribution, reaching target tissues at higher concentrations, avoiding diffusion to adjacent tissues, releasing therapeutic agents or drugs for specific stimuli to achieve a longer duration at a specific rate, and yielding desired effects. The phytofabrication of AgNPs is a cost-effective, one-step, environmentally friendly, and easy method that harnesses sustainable resources and naturally available components of plant extracts (PEs). In addition, it processes various catalytic activities for the degradation of various organic pollutants. For the phytofabrication of AgNPs, plant products can be used in a multifunctional manner as a reducing agent, a stabilizing agent, and a functionalizing agent. In addition, they can be used to curtail the requirements for any additional stabilizing agents and to help the reaction stages subside. Azadirachta indica, a very common and prominent medicinal plant grown throughout the Indian subcontinent, possesses free radical scavenging and other pharmaceutical properties via the regulation of proinflammatory enzymes, such as COX and TOX. It also demonstrates anticancer activities through cell-signaling pathways, modulating tumor-suppressing genes such as p53 and pTEN, transcriptional factors, angiogenesis, and apoptosis via bcl2 and bax. In addition, it possesses antibacterial activities. Phytofabricated AgNPs have been applied in the areas of drug delivery, bioimaging, biosensing, cancer treatment, cosmetics, and cell biology. Such pharmaceutical and biological activities of phytofabricated AgNPs are attributed to more than 300 phytochemicals found in Azadirachta indica, and are especially abundant in flavonoids, polyphenols, diterpenoids, triterpenoids, limonoids, tannins, coumarin, nimbolide, azadirachtin, azadirone, azadiradione, and gedunin. Parts of Azadirachta indica, including the leaves in various forms, have been used for wound healing or as a repellent. This study was aimed at examining previously biosynthesized (from Azadirachta indica) AgNPs for anticancer, wound-healing, and antimicrobial actions (through MTT reduction assay, scratch assay, and microbroth dilution methods, respectively). Additionally, apoptosis in cancer cells and the antibiofilm capabilities of AgNPs were examined through caspase-3 expression, dentine block, and crystal violet methods. We found that biogenic silver nanoparticles are capable of inducing cytotoxicity in HCT-116 colon carcinoma cells (IC50 of 744.23 µg/mL, R2: 0.94), but are ineffective against MCF-7 breast cancer cells (IC50 >> 1000 µg/mL, R2: 0.86). AgNPs (IC50 value) induced a significant increase in caspase-3 expression (a 1.5-fold increase) in HCT-116, as compared with control cells. FITC-MFI was 1936 in HCT-116-treated cells, as compared to being 4551 in cisplatin and 1297 in untreated cells. AgNPs (6.26 µg/mL and 62.5 µg/mL) induced the cellular migration (40.2% and 33.23%, respectively) of V79 Chinese hamster lung fibroblasts; however, the improvement in wound healing was not significant as it was for the controls. AgNPs (MIC of 10 µg/mL) were very effective against MDR Enterococcus faecalis in the planktonic mode as well as in the biofilm mode. AgNPs (10 µg/mL and 320 µg/mL) reduced the E. faecalis biofilm by >50% and >80%, respectively. Natural products, such as Syzygium aromaticum (clove) oil (MIC of 312.5 µg/mL) and eugenol (MIC of 625 µg/mL), showed significant antimicrobial effects against A. indica. Our findings indicate that A. indica-functionalized AgNPs are effective against cancer cells and can induce apoptosis in HCT-116 colon carcinoma cells; however, the anticancer properties of AgNPs can also be upgraded through active targeting (functionalized with enzymes, antibiotics, photosensitizers, or antibodies) in immunotherapy, photothermal therapy, and photodynamic therapy. Our findings also suggest that functionalized AgNPs could be pivotal in the development of a novel, non-cytotoxic, biocompatible therapeutic agent for infected chronic wounds, ulcers, and skin lesions involving MDR pathogens via their incorporation into scaffolds, composites, patches, microgels, or formulations for microneedles, dressings, bandages, gels, or other drug-delivery systems.
Collapse
|
15
|
Bhandari M, Raj S, Kumar A, Kaur DP. Bibliometric analysis on exploitation of biogenic gold and silver nanoparticles in breast, ovarian and cervical cancer therapy. Front Pharmacol 2022; 13:1035769. [PMID: 36618941 PMCID: PMC9818348 DOI: 10.3389/fphar.2022.1035769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Multifunctional nanoparticles are being formulated to overcome the side effects associated with anticancer drugs as well as conventional drug delivery systems. Cancer therapy has gained the advancement due to various pragmatic approaches with better treatment outcomes. The metal nanostructures such as gold and silver nanoparticles accessible via eco-friendly method provide amazing characteristics in the field of diagnosis and therapy towards cancer diseases. The environmental friendly approach has been proposed as a substitute to minimize the use of hazardous compounds associated in chemical synthesis of nanoparticles. In this attempt, researchers have used various microbes, and plant-based agents as reducing agents. In the last 2 decades various papers have been published emphasizing the benefits of the eco-friendly approach and advantages over the traditional method in the cancer therapy. Despite of various reports and published research papers, eco-based nanoparticles do not seem to find a way to clinical translation for cancer treatment. Present review enumerates the bibliometric data on biogenic silver and gold nanoparticles from Clarivate Analytics Web of Science (WoS) and Scopus for the duration 2010 to 2022 for cancer treatment with a special emphasis on breast, ovarian and cervical cancer. Furthermore, this review covers the recent advances in this area of research and also highlights the obstacles in the journey of biogenic nanodrug from clinic to market.
Collapse
Affiliation(s)
- Meena Bhandari
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| | - Seema Raj
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India,*Correspondence: Seema Raj, ,
| | - Ashwani Kumar
- Department of Computer Sciences, School of Engineering and Technology, K.R Mangalam University, Gurugram, India
| | - Dilraj Preet Kaur
- Department of Physics, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| |
Collapse
|
16
|
Antimycin A induced apoptosis in HCT-116 colorectal cancer cells through the up- and downregulation of multiple signaling pathways. Med Oncol 2022; 40:51. [DOI: 10.1007/s12032-022-01901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
|
17
|
Garg R, Rani P, Garg R, Khan MA, Khan NA, Khan AH, Américo-Pinheiro JHP. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119830. [PMID: 35926739 DOI: 10.1016/j.envpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications. In correspondence to green chemistry, researchers prioritize green synthetic techniques over conventional ones due to their eco-friendly and sustainable potential. Green-synthesized NPs have proven more beneficial than those synthesized by conventional methods because of capping by secondary metabolites. The present study reviews the various means being used by the researchers for the green synthesis of Ag-NPs. The morphological characteristics of these NPs as obtained from numerous characterization techniques have been explored. The potential applications of bio-synthesized Ag-NPs viz. Antimicrobial, antioxidant, catalytic, and water remediation along with the plausible mechanisms have been discussed. In addition, toxicity analysis and biomedical applications of these NPs have also been reviewed to provide a detailed overview. The study signifies that biosynthesized Ag-NPs can be efficiently used for various applications in the biomedical and industrial sectors as an environment-friendly and efficient tool.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Priya Rani
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | | |
Collapse
|
18
|
Kabir SR, Islam F, Al-Bari MAA, Asaduzzaman A. Asparagus racemosus mediated silver chloride nanoparticles induce apoptosis in glioblastoma stem cells in vitro and inhibit Ehrlich ascites carcinoma cells growth in vivo. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|