1
|
Zhang Q, Wang J, Chen Z, Qin H, Zhang Q, Tian B, Li X. Transcytosis: an effective mechanism to enhance nanoparticle extravasation and infiltration through biological barriers. Biomed Mater 2025; 20:022003. [PMID: 39788078 DOI: 10.1088/1748-605x/ada85e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Nanoparticles (NPs)1have been explored as drugs carriers for treating tumors and central nervous system (CNS)2diseases and for oral administration. However, they lack satisfactory clinical efficacy due to poor extravasation and infiltration through biological barriers to target tissues. Most clinical antitumor NPs have been designed based on enhanced permeability and retention effects which are insufficient and heterogeneous in human tumors. The tight junctions33TJs: tight junctionsof the blood-brain barrier44BBB: blood-brain barrierand the small intestinal epithelium severely impede NPs from being transported into the CNS and blood circulation, respectively. By contrast, transcytosis enables NPs to bypass these physiological barriers and enhances their infiltration into target tissues by active transport. Here, we systematically review the mechanisms and putative application of NP transcytosis for targeting tumor and CNS tissues, explore oral NP administration, and propose future research directions in the field of NP transcytosis.
Collapse
Affiliation(s)
- Qianyi Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Jiamian Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, People's Republic of China
| | - Zhiyang Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Hao Qin
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Qichen Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Bo Tian
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Xilei Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
2
|
Qasim Almajidi Y, Jawad AQ, Abdulameer Albadri A. Biocompatible PAMAM-PLGA-PCL Nanocarrier for Efficient Curcumin Delivery to Lung Cancer Cells: In Vitro Studies. Chem Biodivers 2024; 21:e202401106. [PMID: 39012926 DOI: 10.1002/cbdv.202401106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
Lung cancer, as the leading cause of death among other types of cancer, has a high rate of incidence throughout the world. Although conventional modalities, like chemotherapy, have been applied for the inhibition of this cancer, they have not led to the suppression of lung cancer owing to their deficiencies. Thus, we developed a novel polylactic-co-glycolic acid (PLGA)-polyamidoamine G4 (PAMAM G4)-polycaprolactone (PCL) nanocarrier for efficient delivery of curcumin (Cur) to A549 lung cancer cells. The synthesized nanocarrier was characterized by applying analytical techniques, FT-IR, DLS, TEM, and TGA. Successful synthesis, nano-size diameter (40-80 nm), near neutral surface charge (8.0 mV), and high drug entrapment (11.5 %) were measured for the nanocarrier. Controlled (about 5 folds within first 2 h) and pH-sensitive (2-3 folds faster within first hours) Cur release observed for PLGA-PAMAM-PCL-Cur. Cell viability test (MTT assay) indicated the high capability of nanocarrier in suppression of A549 cancer cells (21 % viability after 24 h of treatment with 200 nM) while did not result in toxicity on MSC normal cells. The IC50 observed for 50 nM at 24 h of post-treatment in A549 cells. The qRT-PCR technique indicated inducing the expression of apoptotic genes (Caspase9 and Bax) by 6-8 folds and suppressing anti-apoptotic gene (Bcl2) by 7 folds. ROS considerably increased in cancer cells as well. This nanocarrier would be a promising drug delivery system against lung cancer.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Department of Pharmacy (pharmaceutics), Baghdad College of Medical Sciences, 10047, Baghdad, Iraq
- Department of Pharmaceutics, College of Pharmacy, Al-Nahrain university, 10072, Baghdad, Iraq
| | - Ali Q Jawad
- Department of Pharmaceutics, College of Pharmacy, Al-Nahrain university, 10072, Baghdad, Iraq
| | - Ahmed Abdulameer Albadri
- Department of Pharmacy (pharmaceutics), Baghdad College of Medical Sciences, 10047, Baghdad, Iraq
| |
Collapse
|
3
|
Bézard M, Zaroui A, Kharoubi M, Lam F, Poullot E, Teiger E, Agbulut O, Damy T, Kordeli E. Internalisation of immunoglobulin light chains by cardiomyocytes in AL amyloidosis: what can biopsies tell us? Amyloid 2024; 31:209-219. [PMID: 38973117 DOI: 10.1080/13506129.2024.2373748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Cardiac involvement in systemic light chain amyloidosis (AL) leads to chronic heart failure and is a major prognosis factor. Severe cellular defects are provoked in cardiac cells by tissue-deposited amyloid fibrils of misfolded free immunoglobulin light chains (LCs) and their prefibrillar oligomeric precursors. OBJECTIVE Understanding the molecular mechanisms behind cardiac cell cytotoxicity is necessary to progress in therapy and to improve patient management. One key question is how extracellularly deposited molecules exert their toxic action inside cardiac cells. Here we searched for direct evidence of amyloid LC uptake by cardiomyocytes in patient biopsies. METHODS We immunolocalized LCs in cardiac biopsies from four AL cardiac amyloidosis patients and analysed histopathological images by high resolution confocal microscopy and 3D image reconstruction. RESULTS We show, for the first time directly in patient tissue, the presence of LCs inside cardiomyocytes, and report their proximity to nuclei and to caveolin-3-rich areas. Our observations point to macropinocytosis as a probable mechanism of LC uptake. CONCLUSIONS Internalisation of LCs occurs in patient cardiomyocytes. This event could have important consequences for the pathogenesis of the cardiac disease by enabling interactions between amyloid molecules and cellular organelles inducing specific signalling pathways, and might bring new insight regarding treatment.
Collapse
Affiliation(s)
- Mélanie Bézard
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Amira Zaroui
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Mounira Kharoubi
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - France Lam
- Sorbonne Université, I2PS, Imaging Core Facility, Institut de Biologie Paris-Seine (IBPS), Paris-France
| | - Elsa Poullot
- Department of Anatomopathology, Henri-Mondor Hospital, AP-HP, Créteil, France
| | - Emmanuel Teiger
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
| | - Thibaud Damy
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Ekaterini Kordeli
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
| |
Collapse
|
4
|
Zhuang C, Kang M, Oh J, Lee M. Pulmonary delivery of cell membrane-derived nanovesicles carrying anti-miRNA155 oligonucleotides ameliorates LPS-induced acute lung injury. Regen Biomater 2024; 11:rbae092. [PMID: 39220743 PMCID: PMC11364520 DOI: 10.1093/rb/rbae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acute lung injury (ALI) is a devastating inflammatory disease. MicroRNA155 (miR155) in alveolar macrophages and lung epithelial cells enhances inflammatory reactions by inhibiting the suppressor of cytokine signaling 1 (SOCS1) in ALI. Anti-miR155 oligonucleotide (AMO155) have been suggested as a potential therapeutic reagent for ALI. However, a safe and efficient carrier is required for delivery of AMO155 into the lungs for ALI therapy. In this study, cell membrane-derived nanovesicles (CMNVs) were produced from cell membranes of LA4 mouse lung epithelial cells and evaluated as a carrier of AMO155 into the lungs. For preparation of CMNVs, cell membranes were isolated from LA4 cells and CMNVs were produced by extrusion. Cholesterol-conjugated AMO155 (AMO155c) was loaded into CMNVs and extracellular vesicles (EVs) by sonication. The physical characterization indicated that CMNVs with AMO155c (AMO155c/CMNV) were membrane-structured vesicles with a size of ∼120 nm. The delivery efficiency and therapeutic efficacy of CMNVs were compared with those of EVs or polyethylenimine (25 kDa, PEI25k). The delivery efficiency of AMO155c by CMNVs was similar to that by EVs. As a result, the miR155 levels were reduced by AMO155c/CMNV and AMO155c/EV. AMO155c/CMNV were administered intratracheally into the ALI models. The SOCS1 levels were increased more efficiently by AMO155c/CMNV than by the others, suggesting that miR155 effectively was inhibited by AMO155c/CMNV. In addition, the inflammatory cytokines were reduced more effectively by AMO155c/CMNV than they were by AMO155c/EV and AMO155c/PEI25k, reducing inflammation reactions. The results suggest that CMNVs are a useful carrier of AMO155c in the treatment of ALI.
Collapse
Affiliation(s)
- Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Jihun Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| |
Collapse
|
5
|
Sarver E, Keles C, Lowers H, Zell-Baran L, Go L, Hua J, Cool C, Rose C, Green F, Almberg K, Cohen R. In Situ Lung Dust Analysis by Automated Field Emission Scanning Electron Microscopy With Energy Dispersive X-ray Spectroscopy: A Method for Assessing Inorganic Particles in Lung Tissue From Coal Miners. Arch Pathol Lab Med 2024; 148:e154-e169. [PMID: 38918006 DOI: 10.5858/arpa.2024-0002-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 06/27/2024]
Abstract
CONTEXT.— Overexposure to respirable coal mine dust can cause severe lung disease including progressive massive fibrosis (PMF). Field emission scanning electron microscopy with energy dispersive x-ray spectroscopy (FESEM-EDS) has been used for in situ lung dust particle analysis for evaluation of disease etiology. Automating such work can reduce time, costs, and user bias. OBJECTIVE.— To develop and test an automated FESEM-EDS method for in situ analysis of inorganic particles in coal miner lung tissue. DESIGN.— We programmed an automated FESEM-EDS procedure to collect particle size and elemental data, using lung tissue from 10 underground coal miners with PMF and 4 control cases. A statistical clustering approach was used to establish classification criteria based on particle chemistry. Data were correlated to PMF/non-PMF areas of the tissue, using corresponding brightfield microscopy images. Results for each miner case were compared with a separate corresponding analysis of particles recovered following tissue digestion. RESULTS.— In situ analysis of miner tissues showed higher particle number densities than controls and densities were generally higher in PMF than non-PMF areas. Particle counts were typically dominated by aluminum silicates with varying percentages of silica. Compared to digestion results for the miner tissues, in situ results indicated lower density of particles (number per tissue volume), larger size, and a lower ratio of silica to total silicates-probably due to frequent particle clustering in situ. CONCLUSIONS.— Automated FESEM-EDS analysis of lung dust is feasible in situ and could be applied to a larger set of mineral dust-exposed lung tissues to investigate specific histologic features of PMF and other dust-related occupational diseases.
Collapse
Affiliation(s)
- Emily Sarver
- From the Department of Mining and Minerals Engineering, Virginia Tech, Blacksburg (Sarver, Keles)
| | - Cigdem Keles
- From the Department of Mining and Minerals Engineering, Virginia Tech, Blacksburg (Sarver, Keles)
| | - Heather Lowers
- Geology, Geophysics, and Geochemistry Science Center, US Geological Survey, Denver, Colorado (Lowers)
| | - Lauren Zell-Baran
- the Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, Colorado (Zell-Baran, Hua, Rose)
- the Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora (Zell-Baran)
| | - Leonard Go
- Environmental and Occupational Health Sciences Division, University of Illinois Chicago School of Public Health, Chicago (Go, Almberg, Cohen)
| | - Jeremy Hua
- the Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, Colorado (Zell-Baran, Hua, Rose)
- Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora (Hua, Rose)
| | - Carlyne Cool
- the Division of Pathology, National Jewish Health, Denver, Colorado (Cool)
- the Department of Pathology, University of Colorado, Aurora (Cool)
| | - Cecile Rose
- the Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, Colorado (Zell-Baran, Hua, Rose)
- Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora (Hua, Rose)
| | - Francis Green
- the Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada (Green)
| | - Kirsten Almberg
- Environmental and Occupational Health Sciences Division, University of Illinois Chicago School of Public Health, Chicago (Go, Almberg, Cohen)
| | - Robert Cohen
- Environmental and Occupational Health Sciences Division, University of Illinois Chicago School of Public Health, Chicago (Go, Almberg, Cohen)
| |
Collapse
|
6
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
8
|
Mondal J, Pillarisetti S, Junnuthula V, Surwase SS, Hwang SR, Park IK, Lee YK. Extracellular vesicles and exosome-like nanovesicles as pioneering oral drug delivery systems. Front Bioeng Biotechnol 2024; 11:1307878. [PMID: 38260737 PMCID: PMC10800420 DOI: 10.3389/fbioe.2023.1307878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
As extracellular vesicle (EV)-based nanotechnology has developed rapidly, it has made unprecedented opportunities for nanomedicine possible. EVs and exosome-like nanovesicles (ELNVs) are natural nanocarriers with unique structural, compositional, and morphological characteristics that provide excellent physical, chemical, and biochemical properties. In this literature, we examine the characteristics of EVs, including how they are administered orally and their therapeutic activity. According to the current examples of EVs and ELNVs for oral delivery, milk and plant EVs can exert therapeutic effects through their protein, nucleic acid, and lipid components. Furthermore, several methods for loading drugs into exosomes and targeting exosomes have been employed to investigate their therapeutic capability. Moreover, we discuss EVs as potential drug carriers and the potential role of ELNVs for disease prevention and treatment or as potential drug carriers in the future. In conclusion, the issues associated with the development of EVs and ELNVs from sources such as milk and plants, as well as concerns with standardized applications of these EVs, are discussed.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | - Sachin S. Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Republic of Korea
| |
Collapse
|
9
|
Islam MM, Raikwar S. Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles. Protein Pept Lett 2024; 31:209-228. [PMID: 38509673 DOI: 10.2174/0109298665292469240228064739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.
Collapse
Affiliation(s)
- Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| |
Collapse
|
10
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:pharmaceutics14122653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County, 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave. Ste 206, Orange, CA 92868, USA
- Correspondence: ; Tel.: +1-714-509-4964
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
12
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Cubadda F, Macaluso GM, Bussolati O. The TLR4/NFκB-Dependent Inflammatory Response Activated by LPS Is Inhibited in Human Macrophages Pre-Exposed to Amorphous Silica Nanoparticles. NANOMATERIALS 2022; 12:nano12132307. [PMID: 35808143 PMCID: PMC9268534 DOI: 10.3390/nano12132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Correspondence:
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126 Turin, Italy;
| | - Francesco Cubadda
- Istituto Superiore di Sanità-Italian National Institute of Health, 00161 Rome, Italy;
| | - Guido M. Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Centro di Odontoiatria, University of Parma, 43126 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|