1
|
Udaondo A, Montes V, Gimeno O, Rivas FJ. Excess secondary sludge reuse by H 2O 2 thermal dehydration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23023-23036. [PMID: 38418785 PMCID: PMC10997731 DOI: 10.1007/s11356-024-32568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The excess of activated sludge generated in municipal wastewater treatment plants constitutes one of the challenging problems facing modern society. The high-water content of this waste makes difficult the transport, disposal, and management of these solids. In this work, activated sludge excess from a secondary clarifier has been dehydrated by means of a combination of temperature and hydrogen peroxide treatment. Three main operating variables have been considered to affect sludge dewaterability and filterability. Temperature (120-180 °C), hydrogen peroxide dose (0.01-0.03 M), and treatment time (20-60 min) influence have been assessed by completing a 15-run Box Behnken experimental design. Different output variables (water content, resistance to filtration, sedimentation volumetric index, extracellular polymeric substances, etc.) have been monitored. Generally, temperature seems to be the most influencing parameter to obtain a dehydrated sludge with acceptable management/disposal characteristics (sludge volume reduction and filterability). In line with the concept of circular economy, an attempt has been conducted to obtain a sustainable biosorbent from the dehydrated sludge generated in the previous stage. Optimum conditions of carbonization and activation revealed that the solid obtained at 400 °C by using ammonium nitrate as activation agent was the most efficient absorbent to eliminate some model compounds from water (namely, phenol, ofloxacin, and diuron); however, a clear improvement margin in the synthesis is foreseen.
Collapse
Affiliation(s)
- Ana Udaondo
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
| | - Vicente Montes
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain.
| | - Olga Gimeno
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Javier Rivas
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Islam MA, Nazal MK, Angove MJ, Morton DW, Hoque KA, Reaz AH, Islam MT, Karim SMA, Chowdhury AN. Emerging iron-based mesoporous materials for adsorptive removal of pollutants: Mechanism, optimization, challenges, and future perspective. CHEMOSPHERE 2024; 349:140846. [PMID: 38043616 DOI: 10.1016/j.chemosphere.2023.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Iron-based materials (IBMs) have shown promise as adsorbents due to their unique physicochemical properties. This review provides an overview of the different types of IBMs, their synthesis methods, and their properties. Results found in the adsorption of emerging contaminants to a wide range of IBMs are discussed. The IBMs used were evaluated in terms of their maximum uptake capacity, with special consideration given to environmental conditions such as contact time, solution pH, initial pollutant concentration, etc. The adsorption mechanisms of pollutants are discussed taking into account the results of kinetic, isotherm, thermodynamic studies, surface complexation modelling (SCM), and available spectroscopic data. A current overview of molecular modeling and simulation studies related to density functional theory (DFT), surface response methodology (RSM), and artificial neural network (ANN) is presented. In addition, the reusability and suitability of IBMs in real wastewater treatment is shown. The review concludes with the strengths and weaknesses of current research and suggests ideas for future research that will improve our ability to remove contaminants from real wastewater streams.
Collapse
Affiliation(s)
- Md Aminul Islam
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh.
| | - Mazen K Nazal
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Michael J Angove
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia.
| | - David W Morton
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia
| | - Khondaker Afrina Hoque
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh; Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Akter Hossain Reaz
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Mohammad Tajul Islam
- Department of Textile Engineering, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - S M Abdul Karim
- Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - Al-Nakib Chowdhury
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
| |
Collapse
|
3
|
Allahkarami E, Allahkarami E, Azadmehr A. Enhancing the efficiency of Ni(II), Cd(II), and Cu(II) adsorption from aqueous solution using schist/alginate composite: batch and continuous studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105504-105521. [PMID: 37715033 DOI: 10.1007/s11356-023-29808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
The main aim of this research is focused on the synthesis of schist/alginate composite (SC/AL) adsorbent and its utilization for the removal of Ni(II), Cu(II), and Cd(II) from waste streams using batch and column processes. The characterization of developed adsorbent was performed by X-ray fluorescence, X-ray diffraction, FTIR, and BET analyses. The most influential operating parameters (pH, contact time, temperature and initial adsorbate concentration) on the adsorption capacity of pollutants were examined to evaluate the performance of developed adsorbent. The kinetic and equilibrium adsorption results at pH 5.0 indicated that SC/AL composite had good adsorption capacity (qmax) for Ni(II), Cu(II), and Cd(II) estimated at 124.79 mg/g, 111.78 mg/g, and 119.78 mg/g, respectively. From the kinetic viewpoint, the good fit of pseudo-first-order kinetic model to the kinetic adsorption data indicated that dominant interaction of heavy metals with SC/AL composite was physisorption. The results of thermodynamic studies indicated that the adsorption of heavy metals onto SC/AL composite was endothermic and spontaneous in nature. The adsorption capacity of developed adsorbent could still reach relatively 85% of the original one after completing fifth cycle. Therefore, the reusability results of SC/AL composite were quite satisfied, making the developed adsorbent a commercially attractive and green method. Finally, in column studies, the effect of initial concentration of pollutants at pH 5.0 on the removal of heavy metal ions was investigated. The Thomas and Yoon-Nelson models provided a satisfactory explanation for the results of column data.
Collapse
Affiliation(s)
- Esmaeil Allahkarami
- Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Ebrahim Allahkarami
- Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Amirreza Azadmehr
- Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Doyo AN, Kumar R, Barakat MA. Facile Synthesis of the Polyaniline@Waste Cellulosic Nanocomposite for the Efficient Decontamination of Copper(II) and Phenol from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1014. [PMID: 36985909 PMCID: PMC10059074 DOI: 10.3390/nano13061014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The existence of heavy metals and organic pollutants in wastewater is a threat to the ecosystem and a challenge for researchers to remove using common technology. Herein, a facile one-step in situ oxidative polymerization synthesis method has been used to fabricate polyaniline@waste cellulosic nanocomposite adsornt, polyaniline-embedded waste tissue paper (PANI@WTP) to remove copper(II) and phenol from the aqueous solution. The structural and surface properties of the synthesized materials were examined by XRD, FTIR, TEM, and a zeta potential analyzer. The scavenging of the Cu(II) and phenol onto the prepared materials was investigated as a function of interaction time, pollutant concentration, and solution pH. Advanced kinetics and isotherms modeling is used to explore the Cu(II) ion and phenol adsorption mechanisms. The synthesized PANI@WTP adsorbent showed a high intake capacity for Cu(II) than phenol, with the maximum calculated adsorption capacity of 605.20 and 501.23 mg g-1, respectively. The Langmuir equilibrium isotherm model is well-fitted for Cu(II) and phenol adsorption onto the PANI@WTP. The superior scavenging capability of the PANI@WTP for Cu(II) and phenol could be explained based on the host-guest interaction forces and large active sites. Moreover, the efficiency of the PANI@WTP for Cu(II) and phenol scavenging was excellent even after the five cycles of regeneration.
Collapse
|
5
|
Allahkarami E, Dehghan Monfared A, Silva LFO, Dotto GL. Application of Pb-Fe spinel-activated carbon for phenol removal from aqueous solutions: fixed-bed adsorption studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23870-23886. [PMID: 36331730 DOI: 10.1007/s11356-022-23891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Fixed-bed studies for phenol uptake from water were carried out using a novel Pb-Fe spinel-activated carbon adsorbent. A characterization phase including TGA, FTIR, SEM, and BET analyses was performed for the developed active carbon. In column studies, the influence of initial phenol concentration, column bed height, and the solution flow rate was investigated at natural pH. Adsorption of phenol onto Pb-Fe spinel-activated carbon composite and pristine activated carbon was analyzed in the form of breakthrough curves. Under optimum conditions, the maximum adsorption capacities for the magnetic active carbon composite and pristine activated carbon were found to be 113.95 and 102.61 mg/g, respectively. Results indicated that the adsorption capacity of adsorbent for all examined conditions was higher than that obtained for unmodified activated carbon because the composite contains additional metal hydroxides compared with the pristine activated carbon. The Yoon and Nelson, Thomas, and instantaneous local equilibrium (ILE) models were used to explain column data collected under different operating conditions. Finally, the results of the continuous adsorption process were explained successfully using the Yoon-Nelson and Thomas models. Thus, the phenol adsorption on Pb-Fe@MAC was a feasible operation to be performed in fixed-bed mode.
Collapse
Affiliation(s)
- Esmaeil Allahkarami
- Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Shahid Mahini Blvd, Bushehr, 75169-13817, Iran
- Persian Gulf Star Oil Company, Bandar Abbas, Iran
| | - Abolfazl Dehghan Monfared
- Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Shahid Mahini Blvd, Bushehr, 75169-13817, Iran.
| | - Luis Felipe Oliveira Silva
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue 1000, Santa Maria, RS, 97105900, Brazil
| |
Collapse
|
6
|
Raveena, Alka, Gandhi N, Kumari P. Efficacious Removal of Flonicamid Insecticide from Water by GO@functionalized Calix[4]pyrrole: Synergistic Effect in Adsorption. ChemistrySelect 2023. [DOI: 10.1002/slct.202203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Raveena
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
- Department of Chemistry University of Delhi New Delhi 110007 India
| | - Alka
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| | - Namita Gandhi
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| | - Pratibha Kumari
- Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
| |
Collapse
|
7
|
Raheem I, Mubarak NM, Karri RR, Solangi NH, Jatoi AS, Mazari SA, Khalid M, Tan YH, Koduru JR, Malafaia G. Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. CHEMOSPHERE 2023; 311:137056. [PMID: 36332734 DOI: 10.1016/j.chemosphere.2022.137056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.
Collapse
Affiliation(s)
- Ijlal Raheem
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei, Darussalam.
| | - Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil. Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
8
|
Zhou X, Chen G, Yin S, Chen L, Gao P, Xiao S, Yang F. Magnetic porous carbon derived from NH
2
‐MIL‐101(Fe) as an adsorbent for the magnetic solid‐phase extraction of anthraquinones. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Zhou
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Guo‐Ying Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Shi‐Jun Yin
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Lin‐Xiao Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Peng Gao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Shang‐You Xiao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| | - Feng‐Qing Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering Chongqing University Chongqing P. R. China
| |
Collapse
|
9
|
Wang Y, Guo C, Zhang L, Lu X, Liu Y, Li X, Wang Y, Wang S. Arsenic Oxidation and Removal from Water via Core-Shell MnO 2@La(OH) 3 Nanocomposite Adsorption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10649. [PMID: 36078364 PMCID: PMC9518204 DOI: 10.3390/ijerph191710649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As(III)), more toxic and with less affinity than arsenate (As(V)), is hard to remove from the aqueous phase due to the lack of efficient adsorbents. In this study, a core-shell structured MnO2@La(OH)3 nanocomposite was synthesized via a facile two-step precipitation method. Its removal performance and mechanisms for As(V) and As(III) were investigated through batch adsorption experiments and a series of analysis methods including the transformation kinetics of arsenic species in As(III) removal, FTIR, XRD and XPS. Solution pH could significantly influence the removal efficiencies of arsenic. The adsorption process of As(V) occurred rapidly in the first 5 h and then gradually decreased, whereas the As(III) removal rate was relatively slower. The maximum adsorption capacities of As(V) and As(III) were up to 138.9 and 139.9 mg/g at pH 4.0, respectively. For As(V) removal, the inner-sphere complexes of lanthanum arsenate were formed through the ligand exchange reactions and coprecipitation. The oxidation of As(III) to the less toxic As(V) by δ-MnO2 and subsequently the synergistic adsorption process by the lanthanum hydroxide on the MnO2@La(OH)3 nanocomposite to form lanthanum arsenate were the dominant mechanisms of As(III) removal. XPS analysis indicated that approximately 20.6% of Mn in the nanocomposite after As(III) removal were Mn(II). Furthermore, a small amount of Mn(II) and La(III) were released into solution during the process of As(III) removal. These results confirm its efficient performance in the arsenic-containing water treatment, such as As(III)-contaminated groundwater used for irrigation and As(V)-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Yulong Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Chen Guo
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Lin Zhang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Xihao Lu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yanhong Liu
- College of Software, Henan University, Kaifeng 475004, China
| | - Xuhui Li
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|