1
|
Petronijevic E, Larciprete MC, Centini M, Pronti L, Aglieri V, Razzari L, Toma A, Macaluso R, Voti RL, Sibilia C. Active infrared tuning of metal-insulator-metal resonances by VO 2 thin film. Sci Rep 2024; 14:25324. [PMID: 39455631 PMCID: PMC11512023 DOI: 10.1038/s41598-024-75430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
VO2 is a promising phase change material offering a large contrast of electric, thermal, and optical properties when transitioning from semiconductor to metallic phase. Here we show that a hybrid metamaterial obtained by proper combination of a VO2 layer and a nanodisk gold array provides a tunable plasmonic gap resonance in the infrared range. Specifically, we have designed and fabricated a metal-insulator-metal gap resonance by inserting sub-wavelength VO2 film between a flat gold layer and a gold nanodisk resonator array. The resonance of the hybrid metamaterial is centered in the useful 3-5 μm range when VO2 is in its semiconductor state. The experimental study highlights a monotonical spectral tuning of the resonance when increasing temperature up to 50 °C above the room temperature, providing a continuous resonance shift of almost 1 μm in the mid-infrared range. Wavelength range and intensity tunability can be further optimized by modifying the thicknesses of the layers and metamaterial parameters.
Collapse
Affiliation(s)
- Emilija Petronijevic
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | | | - Marco Centini
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | - Lucilla Pronti
- National Laboratories of Frascati - INFN, Via Enrico Fermi 54, 00044, Frascati, Rome, Italy
| | - Vincenzo Aglieri
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
- Clean Room Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Luca Razzari
- Institut National de la Recherche Scientifique - Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Andrea Toma
- Clean Room Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Roberto Macaluso
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Roberto Li Voti
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | - Concita Sibilia
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| |
Collapse
|
2
|
Wang G, Ryu K, Dong Z, Hu Y, Ke Y, Dong Z, Long Y. Micro/nanofabrication of heat management materials for energy-efficient building facades. MICROSYSTEMS & NANOENGINEERING 2024; 10:115. [PMID: 39183234 PMCID: PMC11345463 DOI: 10.1038/s41378-024-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 08/27/2024]
Abstract
Advanced building facades, which include windows, walls, and roofs, hold great promise for reducing building energy consumption. In recent decades, the management of heat transfer via electromagnetic radiation between buildings and outdoor environments has emerged as a critical research field aimed at regulating solar irradiation and thermal emission properties. Rapid advancements have led to the widespread utilization of advanced micro/nanofabrication techniques. This review provides the first comprehensive summary of fabrication methods for heat management materials with potential applications in energy-efficient building facades, with a particular emphasis on recent developments in fabrication processing and material property design. These methods include coating, vapor deposition, nanolithography, printing, etching, and electrospinning. Furthermore, we present our perspectives regarding their advantages and disadvantages and our opinions on the opportunities and challenges in this field. This review is expected to expedite future research by providing information on the selection, design, improvement, and development of relevant fabrication techniques for advanced materials with energy-efficient heat management capabilities.
Collapse
Affiliation(s)
- Guanya Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China
| | - Keunhyuk Ryu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore.
- School of Interdisciplinary Studies, Lingnan University, Tuen Mun, New Territories, 999077, Hong Kong SAR, China.
| | - ZhiLi Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Yi Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong SAR, China.
| |
Collapse
|
3
|
Boontan A, Barimah EK, Steenson P, Jose G. Stabilization of the VO 2(M2) Phase and Change in Lattice Parameters at the Phase Transition Temperature of W XV 1-XO 2 Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51606-51616. [PMID: 37875389 PMCID: PMC10636711 DOI: 10.1021/acsami.3c11484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Various methods have been used to fabricate vanadium dioxide (VO2) thin films exhibiting polymorph phases and an identical chemical formula suited to different applications. Most fabrication techniques require post-annealing to convert the amorphous VO2 thin film into the VO2 (M1) phase. In this study, we provide a temperature-dependent XRD analysis that confirms the change in lattice parameters responsible for the metal-to-insulator transition as the structure undergoes a monoclinic to the tetragonal phase transition. In our study, we deposited VO2 and W-doped VO2 thin films onto silica substrates using a high repetition rate (10 kHz) fs-PLD deposition without post-annealing. The XRD patterns measured at room temperature revealed stabilization of the monoclinic M2 phase by W6+ doping VO2. We developed an alternative approach to determine the phase transition temperatures using temperature-dependent X-ray diffraction measurements to evaluate the a and b lattice parameters for the monoclinic and rutile phases. The a and b lattice parameters versus temperature revealed phase transition temperature reduction from ∼66 to 38 °C when the W6+ concentration increases. This study provides a novel unorthodox technique to characterize and evaluate the structural phase transitions seen on VO2 thin films.
Collapse
Affiliation(s)
- Artitsupa Boontan
- School
of Chemical and Process Engineering, University
of Leeds, Clarendon Road, Leeds LS2 9JT, U.K.
| | - Eric Kumi Barimah
- School
of Chemical and Process Engineering, University
of Leeds, Clarendon Road, Leeds LS2 9JT, U.K.
| | - Paul Steenson
- School
of Electronic and Electrical Engineering, University of Leeds, Clarendon Road, Leeds LS2 9JT, U.K.
| | - Gin Jose
- School
of Chemical and Process Engineering, University
of Leeds, Clarendon Road, Leeds LS2 9JT, U.K.
| |
Collapse
|
4
|
Wang S, He J, Sun P. Homogeneous Nanostructured VO 2@SiO 2 as an Anti-Reflecting Layer in the Visible/Near Infrared Wavelength. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6035. [PMID: 37687728 PMCID: PMC10488746 DOI: 10.3390/ma16176035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Low reflectivity is of great significance to photoelectric devices, optical displays, solar cells, photocatalysis and other fields. In this paper, vanadium oxide is deposited on pattern SiO2 via atomic layer deposition and then annealed to characterize and analyze the anti-reflection effect. Scanning electron microscope (SEM) images indicate that the as-deposited VOx film has the advantages of uniformity and controllability. After annealing treatment, the VO2@pattern SiO2 has fewer crevices compared with VO2 on the accompanied planar SiO2 substrate. Raman results show that there is tiny homogeneous stress in the VO2 deposited on pattern SiO2, which dilutes the shrinkage behavior of the crystallization process. The optical reflection spectra indicate that the as-deposited VOx@pattern SiO2 has an anti-reflection effect due to the combined mechanism of the trapping effect and the effective medium theory. After annealing treatment, the weighted average reflectance diminished to 1.46% in the visible near-infrared wavelength range of 650-1355 nm, in which the absolute reflectance is less than 2%. Due to the multiple scattering effect caused by the tiny cracks generated through annealing, the anti-reflection effect of VO2@pattern SiO2 is superior to that of VOx@pattern SiO2. The ultra-low reflection frequency domain amounts to 705 nm, and the lowest absolute reflectance emerges at 1000 nm with an astonishing value of 0.86%. The prepared anti-reflective materials have significant application prospects in the field of intelligent optoelectronic devices due to the controllability of atomic layer deposition (ALD) and phase transition characteristics of VO2.
Collapse
Affiliation(s)
- Shuxia Wang
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China; (S.W.); (J.H.)
| | - Jiajun He
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China; (S.W.); (J.H.)
| | - Panxu Sun
- School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Sun T, Zhang Z, Cui D, Mu G, Sun X, Su X, Shi Y. Quantitative 3D Temperature Rendering of Deep Tumors by a NIR-II Reversibly Responsive W-VO 2@PEG Photoacoustic Nanothermometer to Promote Precise Cancer Photothermal Therapy. ACS NANO 2023; 17:14604-14618. [PMID: 37471572 DOI: 10.1021/acsnano.3c01723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Accurately monitoring the three-dimensional (3D) temperature distribution of the tumor area in situ is a critical task that remains challenging in precision cancer photothermal (PT) therapy. Here, by ingeniously constructing a polyethylene glycol-coated tungsten-doped vanadium dioxide (W-VO2@PEG) photoacoustic (PA) nanothermometer (NThem) that linearly and reversibly responds to the thermal field near the human-body-temperature range, the authors propose a method to realize quantitative 3D temperature rendering of deep tumors to promote precise cancer PT therapy. The prepared NThems exhibit a mild phase transition from the monoclinic phase to the rutile phase when their temperature grows from 35 to 45 °C, with the optical absorption sharply increased ∼2-fold at 1064 nm in an approximately linear manner in the near-infrared-II (NIR-II) region, enabling W-VO2@PEG to be used as NThems for quantitative temperature monitoring of deep tumors with basepoint calibration, as well as diagnostic agents for PT therapy. Experimental results showed that the temperature measurement accuracy of the proposed method can reach 0.3 °C, with imaging depths up to 2 and 0.65 cm in tissue-mimicking phantoms and mouse tumor tissue, respectively. In addition, it was verified through PT therapy experiments in mice that the proposed method can achieve extremely high PT therapy efficiency by monitoring the temperature of the target area during PT therapy. This work provides a potential demonstration promoting precise cancer PT therapy through quantitative 3D temperature rendering of deep tumors by PA NThems with higher security and higher efficacy.
Collapse
Affiliation(s)
- Ting Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhui Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Dandan Cui
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Gen Mu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaodong Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoye Su
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
6
|
Zhang R, Yang W, Zhang L, Huang T, Niu L, Xu P, Chen Z, Chen X, Hu W, Dai N. Reversible Entropy-Driven Defect Migration and Insulator-Metal Transition Suppression in VO 2 Nanostructures for Phase-Change Electronic Switching. Chemphyschem 2023:e202300059. [PMID: 36880971 DOI: 10.1002/cphc.202300059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/08/2023]
Abstract
Oxygen defects are among essential issues and required to be manipulated in correlated electronic oxides with insulator-metal transition (IMT). Besides, surface and interface control are necessary but challenging in field-induced electronic switching towards advanced IMT-triggered transistors and optical modulators. Herein, we demonstrated reversible entropy-driven oxygen defect migrations and reversible IMT suppression in vanadium dioxide (VO2 ) phase-change electronic switching. The initial IMT was suppressed with oxygen defects, which is caused by the entropy change during reversed surface oxygen ionosorption on the VO2 nanostructures. This IMT suppression is reversible and reverts when the adsorbed oxygen extracts electrons from the surface and heals defects again. The reversible IMT suppression observed in the VO2 nanobeam with M2 phase is accompanied by large variations in the IMT temperature. We also achieved irreversible and stable IMT by exploiting an Al2 O3 partition layer prepared by atomic layer deposition (ALD) to disrupt the entropy-driven defect migration. We expected that such reversible modulations would be helpful for understanding the origin of surface-driven IMT in correlated vanadium oxides, and constructing functional phase-change electronic and optical devices.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanli Yang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Lepeng Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Tiantian Huang
- State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Linkui Niu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Peiran Xu
- State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhimin Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Chen
- State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Ning Dai
- State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Jiang N, Chen S, Wang J, He C, Fang K, Yin H, Liu Y, Li Y, Yu D. Smart thermally responsive perovskite materials: Thermo-chromic application and density function theory calculation. Heliyon 2023; 9:e12845. [PMID: 36704277 PMCID: PMC9871234 DOI: 10.1016/j.heliyon.2023.e12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
With the continuous improvement of human's requirements for temperature control suitable for living, the energy consumption of electrical appliances such as air conditioners has become a major challenge in traditional architectural design. Generally, most of the solar energy passes through the glass to enter and exit the building, but the traditional glass can hardly control the light and heat energy, causing the indoor temperature to change dramatically with the environment. Therefore, it is more urgent to develop green and efficient smart windows. Perovskite is a temperature-adaptive material, which has the ability of phase transition and can adjust its band gap for thermochromic applications. In this work, we study the perovskite-based thermochromic smart window. As a new application of perovskite, a number of experiments have been carried out. However, there is still a lack of theoretical analysis on phase transition mechanisms and crystal structure prediction. Density functional theory (DFT) calculation is the most useful tool in optoelectronics, especially for perovskite crystal. Here, we extracted typical cases from published literature for analysis and comparison and summarized the crystal structure, electronic structure stability, interface engineering, and thermal characteristics employing DFT calculation We believe this work will pave the way for DFT application for the study of thermochromic perovskite.
Collapse
Affiliation(s)
- Ning Jiang
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Shuming Chen
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Jintao Wang
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Chenyang He
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, Jilin Province, China
| | - Kai Fang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, Jilin Province, China
| | - Hanlin Yin
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Yitong Liu
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
| | - Ye Li
- College of Physics, Changchun University of Science and Technology, Changchun, Jilin Province, China
- Corresponding author.
| | - Duan Yu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun, Jilin Province, China
- Corresponding author.
| |
Collapse
|
8
|
Zhao Y, Ji H, Lu M, Tao J, Ou Y, Wang Y, Chen Y, Huang Y, Wang J, Mao Y. Thermochromic Smart Windows Assisted by Photothermal Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3865. [PMID: 36364641 PMCID: PMC9657717 DOI: 10.3390/nano12213865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Thermochromic smart windows are optical devices that can regulate their optical properties actively in response to external temperature changes. Due to their simple structures and as they do not require other additional energy supply devices, they have great potential in building energy-saving. However, conventional thermochromic smart windows generally have problems with high response temperatures and low response rates. Owing to their great effect in photothermal conversion, photothermal materials are often used in smart windows to assist phase transition so that they can quickly achieve the dual regulation of light and heat at room temperature. Based on this, research progress on the phase transition of photothermal material-assisted thermochromic smart windows is summarized. In this paper, the phase transition mechanisms of several thermochromic materials (VO2, liquid crystals, and hydrogels) commonly used in the field of smart windows are introduced. Additionally, the applications of carbon-based nanomaterials, noble metal nanoparticles, and semiconductor (metal oxygen/sulfide) nanomaterials in thermochromic smart windows are summarized. The current challenges and solutions are further indicated and future research directions are also proposed.
Collapse
|
9
|
Wang Y, Fu X, Chen Y, Peng H, Qin L, Ning Y, Wang L. Optimal Design and Analysis of 4.7 μm Hybrid Deep Dielectric High Efficiency Transmission Gratings. MICROMACHINES 2022; 13:1706. [PMID: 36296059 PMCID: PMC9608812 DOI: 10.3390/mi13101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
There is currently no transmission grating with good diffraction efficiency in the 4.7 μm band. Metal gratings at this wavelength are all reflective gratings which has a diffraction efficiency of lower than 90% and lower laser damage threshold. In this paper, we bring up a design of a multi-layer transmission grating with both high diffraction efficiency and wide working wavelength band. We have proved that the transmission grating made of composite materials has an average diffraction effectiveness of more than 96% throughout the whole spectral range of 200 nm. Meanwhile, the theoretically computed transmission grating has a highest first-order diffraction efficiency of more than 99.77% at 4746 nm. This multilayer dielectric film transmission grating's optimized design may further boost spectral beam combining power, providing a practical technique for increasing SBC power and brightness.
Collapse
Affiliation(s)
- Ye Wang
- School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Xiuhua Fu
- School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Yongyi Chen
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Jlight Semiconductor Technology Co., Ltd., No. 1588, Changde Road, ETDZ, Changchun 130102, China
| | - Hangyu Peng
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Jlight Semiconductor Technology Co., Ltd., No. 1588, Changde Road, ETDZ, Changchun 130102, China
| | - Li Qin
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Yongqiang Ning
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Lijun Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Peng Cheng Laboratory, No. 2, Xingke 1st Street, Nanshan, Shenzhen 518000, China
- Academician Team Innovation Center of Hainan Province, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, School of Physics and Electronic Engineering, Hainan Normal University, Haikou 570206, China
| |
Collapse
|