1
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Wang B, Pan J, Liu Z. Unraveling FOXO3a and USP18 Functions in Idiopathic Pulmonary Fibrosis through Single-Cell RNA Sequencing of Mouse and Human Lungs. Glob Med Genet 2023; 10:301-310. [PMID: 38025194 PMCID: PMC10651367 DOI: 10.1055/s-0043-1776697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is identified as a chronic, progressive lung disease, predominantly marked by enhanced fibroblast proliferation and excessive deposition of extracellular matrix. The intricate interactions between diverse molecular pathways in fibroblasts play a crucial role in driving the pathogenesis of IPF. Methods This research is focused on elucidating the roles of FOXO3a, a transcription factor, and USP18, a ubiquitin-specific protease, in modulating fibroblast functionality in the context of IPF. FOXO3a is well-known for its regulatory effects on cellular responses, including apoptosis and oxidative stress, while USP18 is generally associated with protein deubiquitination. Results Our findings highlight that FOXO3a acts as a critical regulator in controlling fibroblast activation and differentiation, illustrating its vital role in the pathology of IPF. Conversely, USP18 seems to promote fibroblast proliferation and imparts resistance to apoptosis, thereby contributing to the exacerbation of fibrotic processes. The synergistic dysregulation of both FOXO3a and USP18 in fibroblasts was found to significantly contribute to the fibrotic alterations characteristic of IPF. Conclusion Deciphering the complex molecular interactions between FOXO3a and USP18 in fibroblasts provides a deeper understanding of IPF pathogenesis and unveils novel therapeutic avenues, offering a promising potential for not just halting but potentially reversing the progression of this debilitating disease.
Collapse
Affiliation(s)
- Ban Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Peoples' Republic of China
| | - Jichun Pan
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, Peoples' Republic of China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Peoples' Republic of China
| |
Collapse
|
3
|
Zeng J, Gao W, Tang Y, Wang Y, Liu X, Yin J, Su X, Zhang M, Kang E, Tian Y, Ni B, He W. Hypoxia-sensitive cells trigger NK cell activation via the KLF4-ASH1L-ICAM-1 axis, contributing to impairment in the rat epididymis. Cell Rep 2023; 42:113442. [PMID: 37952156 DOI: 10.1016/j.celrep.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Male infertility is a global health problem especially prevalent in high-altitude regions. The epididymis is essential for sperm maturation, but the influence of environmental cues on its reshaping remains poorly understood. Here, we use single-cell transcriptomics to track the cellular profiles of epidydimal cells in rats raised under normoxia or extended hypoxia. The results show that hypoxia impairs epididymal function, evident in reduced epithelial cells, compromised blood-epididymis barrier integrity, and increased natural killer cells. Through combined analysis of gene-regulatory networks and cell-cell interaction maps, we identify epididymal hypoxia-sensitive cells that communicate with natural killer (NK) cells via increased intercellular adhesion molecule 1 (ICAM-1) driven by KLF4 recruitment of the histone methyltransferase ASL1L to the Icam1 promoter. Taken together, our study offers a detailed blueprint of epididymal changes during hypoxia and defines a KLF4-ALSH1L-ICAM-1 axis contributing to NK cell activation, yielding a potential treatment targeting hypoxia-induced infertility.
Collapse
Affiliation(s)
- Jitao Zeng
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weiwu Gao
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Ying Tang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ying Wang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaona Liu
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jun Yin
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Xingxing Su
- Hepatological Surgery Department, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Enchuan Kang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Tian
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wei He
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Fernandes M, Hoggard B, Jamme P, Paget S, Truong M, Grégoire V, Vinchent A, Descarpentries C, Morabito A, Stanislovas J, Farage E, Meneboo J, Sebda S, Bouchekioua‐Bouzaghou K, Nollet M, Humez S, Perera T, Fromme P, Grumolato L, Figeac M, Copin M, Tulasne D, Cortot AB, Kermorgant S, Kherrouche Z. MET exon 14 skipping mutation is a hepatocyte growth factor (HGF)-dependent oncogenic driver in vitro and in humanised HGF knock-in mice. Mol Oncol 2023; 17:2257-2274. [PMID: 36799689 PMCID: PMC10620121 DOI: 10.1002/1878-0261.13397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Exon skipping mutations of the MET receptor tyrosine kinase (METex14), increasingly reported in cancers, occur in 3-4% of non-small-cell lung cancer (NSCLC). Only 50% of patients have a beneficial response to treatment with MET-tyrosine kinase inhibitors (TKIs), underlying the need to understand the mechanism of METex14 oncogenicity and sensitivity to TKIs. Whether METex14 is a driver mutation and whether it requires hepatocyte growth factor (HGF) for its oncogenicity in a range of in vitro functions and in vivo has not been fully elucidated from previous preclinical models. Using CRISPR/Cas9, we developed a METex14/WT isogenic model in nontransformed human lung cells and report that the METex14 single alteration was sufficient to drive MET-dependent in vitro anchorage-independent survival and motility and in vivo tumorigenesis, sensitising tumours to MET-TKIs. However, we also show that human HGF (hHGF) is required, as demonstrated in vivo using a humanised HGF knock-in strain of mice and further detected in tumour cells of METex14 NSCLC patient samples. Our results also suggest that METex14 oncogenicity is not a consequence of an escape from degradation in our cell model. Thus, we developed a valuable model for preclinical studies and present results that have potential clinical implication.
Collapse
Affiliation(s)
- Marie Fernandes
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| | | | - Philippe Jamme
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| | - Sonia Paget
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| | - Marie‐José Truong
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| | | | - Audrey Vinchent
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| | | | - Angela Morabito
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| | | | - Enoir Farage
- Barts Cancer InstituteQueen Mary University of LondonUK
| | - Jean‐Pascal Meneboo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, LilleFrance
| | - Shéhérazade Sebda
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, LilleFrance
| | | | - Marie Nollet
- Barts Cancer InstituteQueen Mary University of LondonUK
| | - Sarah Humez
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
- Univ LilleDepartment of Pathology, CHU LilleFrance
| | | | - Paul Fromme
- Department of Mechanical EngineeringUniversity College LondonUK
| | - Luca Grumolato
- Univ Rouen Normandie, Inserm, NorDiC UMR 1239, 76000 RouenFrance
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, LilleFrance
| | - Marie‐Christine Copin
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
- Univ LilleDepartment of Pathology, CHU LilleFrance
| | - David Tulasne
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| | - Alexis B. Cortot
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
- Univ. LilleThoracic Oncology Department, CHU LilleFrance
| | | | - Zoulika Kherrouche
- Univ. Lille, CNRS, Inserm, CHU LilleInstitut Pasteur de Lille, UMR9020 – UMR1277 - Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesFrance
| |
Collapse
|
5
|
Ortega-Ferreira C, Soret P, Robin G, Speca S, Hubert S, Le Gall M, Desvaux E, Jendoubi M, Saint-Paul J, Chadli L, Chomel A, Berger S, Nony E, Neau B, Fould B, Licznar A, Levasseur F, Guerrier T, Elouej S, Courtade-Gaïani S, Provost N, Nguyen TQ, Verdier J, Launay D, De Ceuninck F. Antibody-mediated neutralization of galectin-3 as a strategy for the treatment of systemic sclerosis. Nat Commun 2023; 14:5291. [PMID: 37652913 PMCID: PMC10471779 DOI: 10.1038/s41467-023-41117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune, inflammatory and fibrotic disease with limited treatment options. Developing new therapies is therefore crucial to address patient needs. To this end, we focused on galectin-3 (Gal-3), a lectin known to be associated with several pathological processes seen in SSc. Using RNA sequencing of whole-blood samples in a cross-sectional cohort of 249 patients with SSc, Gal-3 and its interactants defined a strong transcriptomic fingerprint associated with disease severity, pulmonary and cardiac malfunctions, neutrophilia and lymphopenia. We developed new Gal-3 neutralizing monoclonal antibodies (mAb), which were then evaluated in a mouse model of hypochlorous acid (HOCl)-induced SSc. We show that two of these antibodies, D11 and E07, reduced pathological skin thickening, lung and skin collagen deposition, pulmonary macrophage content, and plasma interleukin-5 and -6 levels. Moreover, E07 changed the transcriptional profiles of HOCl-treated mice, resulting in a gene expression pattern that resembled that of control mice. Similarly, pathological pathways engaged in patients with SSc were counteracted by E07 in mice. Collectively, these findings demonstrate the translational potential of Gal-3 blockade as a therapeutic option for SSc.
Collapse
Affiliation(s)
- Céline Ortega-Ferreira
- Servier R&D Center, Biomarker Assay Development, Translational Medicine, Gif-sur-Yvette, France
| | - Perrine Soret
- Servier R&D Center, Biomarker Biostatistics, Gif-sur-Yvette, France
| | | | - Silvia Speca
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sandra Hubert
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | | | - Emiko Desvaux
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - Manel Jendoubi
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | | | - Loubna Chadli
- Servier R&D Center, Clinical Biomarker Development, Translational Medicine, Gif-sur-Yvette, France
| | - Agnès Chomel
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Sylvie Berger
- Servier R&D Center, Structural Sciences, Gif-sur-Yvette, France
| | - Emmanuel Nony
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Béatrice Neau
- Servier R&D Center, Preclinical Biostatistics, Quantitative Pharmacology, Gif-sur-Yvette, France
| | - Benjamin Fould
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Anne Licznar
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Franck Levasseur
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Thomas Guerrier
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sahar Elouej
- Servier R&D Center, Computational Medicine, Gif-sur-Yvette, France
| | | | - Nicolas Provost
- Servier R&D Center, Molecular Genomics, Gif-sur-Yvette, France
| | | | - Julien Verdier
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - David Launay
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
- Lille University Hospital, Department of Internal Medicine and Clinical Immunology, Reference Center for Rare Systemic Autoimmune Diseases, North and North-West France (CeRAINO), Lille, France
| | - Frédéric De Ceuninck
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France.
| |
Collapse
|