1
|
Sasikumar K, Prabakaran DS, Rajamanikandan R, Ju H. Yellow Emissive Carbon Dots - A Robust Nanoprobe for Highly Sensitive Quantification of Jaundice Biomarker and Mitochondria Targeting in Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:6730-6739. [PMID: 39267591 DOI: 10.1021/acsabm.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The abnormally high level of bilirubin (BR) in biofluids (human serum and urine) indicates a high probability of jaundice and liver dysfunction. However, quantification of BR as the Jaundice biomarker is difficult due to the interference of various biomolecules in serum and urine. To address this issue, we developed a fluorescence-based detection strategy, for which yellow emissive carbon dots (YCDs) were produced from a one-step solvothermal process using phloroglucinol and thionin acetate as chemical precursors. The as-fabricated YCDs exhibited a strong fluorescence peak at the wavelength of 542 nm upon excitation at 390 nm. We used YCDs for detecting BR through the fluorescence turn-off mechanism, unveiling the excellent sensitivity in the linear range of 0.5-12.5 μM with a limit of detection (LOD) of 9.62 nM, which was far below the clinically relevant range. The analytical nanoprobe also offered excellent detection specificity for quantifying BR in real samples. Moreover, the biocompatible fluorescent nanoprobe was successfully employed to target mitochondria in live cancer cells. A colocalization study confirmed that YCDs possessed the ability to target mitochondria and overlapped completely with MitoTracker Red. The developed nanoprobe of YCDs turned out to be straightforward in their synthesis, noninvasive, and can be utilized for biomedical sensors to diagnose the onset of jaundice as well as for mitochondria targeting.
Collapse
Affiliation(s)
- Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Dhashnamoorthy Subramanian Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ramar Rajamanikandan
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
2
|
Caetano M, Becceneri AB, Ferreira MV, Assunção RMN, da Silva RS, de Lima RG. Carbonized Polymer Dots: Influence of the Carbon Nanoparticle Structure on Cell Biocompatibility. ACS OMEGA 2024; 9:38864-38877. [PMID: 39310212 PMCID: PMC11411664 DOI: 10.1021/acsomega.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Carbonized polymer dots (CPDs) were obtained by using microwave irradiation under the same conditions. However, different carbogenic precursors were used, such as aromatic diamine molecules, ortho-phenylenediamine (o-OPDA), and 3,4-diaminobenzoic acid (3,4-DABA). Both carbon nanoparticles showed different structural results based on Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and atomic force microscopy analyses. However, there are similar spectroscopic (UV-visible and fluorescence emission) profiles. The photophysical results, like quantum yield (QY) and fluorescence lifetime, were not identical; CPDs-OPDA has a higher QY and fluorescence lifetime than CPDs-3,4-DABA. CPDs-3,4-DABA presents a more hydrophobic character than CPDs-OPDA and has a more negative superficial charge. Cell viability studies in both standard and tumor lines demonstrated higher cytotoxicity from CPDs-OPDA than that from CPDs-3,4-DABA. The oxidative stress identified in cells treated with CPDs-OPDA was based on reactive oxygen species and associated with nitric oxide production. CPDs-3,4-DABA showed more DPHH inhibition than CPDs-OPDA, indicating the antioxidant activity of CPDs.
Collapse
Affiliation(s)
- Mayara
Martins Caetano
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Amanda Blanque Becceneri
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto,
USP, Avenida Do Café
S/n, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Marcos Vinícius Ferreira
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Rosana Maria Nascimento Assunção
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Roberto Santana da Silva
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto,
USP, Avenida Do Café
S/n, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Renata Galvão de Lima
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| |
Collapse
|
3
|
Kamalarasan V, Venkateswaran C. Fluorescence Carbon Dots from Blood-Berries for Sensing Cr 6+ Ions in Water and Application in White Light Emitting Diode. J Fluoresc 2024:10.1007/s10895-024-03916-1. [PMID: 39254817 DOI: 10.1007/s10895-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Conventional techniques for identifying heavy metal ions in water are laborious and time-consuming. Therefore, it is necessary to create innovative sensing technologies that can detect with greater sensitivity and speed. Although there have been reports of optical-based assays utilising fluorescent nanomaterials, these assays usually rely on variations in signal strength. However, this approach has significant drawbacks when it comes to environmental monitoring. Fluorescence carbon dots (CDs) have been prepared by facile synthesis from Blood berries. A homemade heavy metal optical detector is constructed to accurately identify heavy metal ions, exclusively Cr6+ ions in a water medium. Their optical emission signature varies based on the specific chromium ions in solution, and the emission intensity also changes depending on its concentration. The quenching behaviour is attributed to the interaction between the metallic cations and the fluorescent surface states of the carbon dots. Another application is the encapsulation of CDs in PVDF polymer to form a flexible film and use it as a phosphor for LED conversion.
Collapse
Affiliation(s)
- V Kamalarasan
- Department of Nuclear Physics, University of Madras, Guindy campus, Chennai, 600025, Tamil Nadu, India
| | - C Venkateswaran
- Department of Nuclear Physics, University of Madras, Guindy campus, Chennai, 600025, Tamil Nadu, India.
| |
Collapse
|
4
|
K H. A review on carbon quantum dot/semiconductor-based nanocomposites as hydrogen production photocatalysts. RSC Adv 2024; 14:23404-23422. [PMID: 39055266 PMCID: PMC11270004 DOI: 10.1039/d4ra04149f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Carbon quantum dots (CQDs) are discrete, quasi-spherical carbon nanoparticles with sizes below 10 nm. The properties of CQDs can be further enhanced by doping with elements such as nitrogen, phosphorous, sulphur, and boron or co-doping with heteroatoms such as nitrogen-phosphorous, nitrogen-sulphur, and nitrogen-boron. These excellent properties of CQDs can be utilized to enhance the photocatalytic performance of semiconductors. Therefore, in this review, we summarize different types of bare CQD-scaffolded semiconductors, both doped and co-doped, used for photocatalytic hydrogen production. Moreover, the detailed photocatalytic mechanism of CQD/semiconductor-based hydrogen production is reviewed. Recent progress in the design and development of CQD-based photocatalysts, along with the challenges involved, is comprehensively reviewed.
Collapse
Affiliation(s)
- Hareesh K
- Department of Physics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
5
|
Roozbahani A, Salahinejad M, Gholipour V. An exploratory in N-doped carbon dots as green fluorescence probes for Hg(II) ions detection. ENVIRONMENTAL TECHNOLOGY 2024; 45:3612-3620. [PMID: 37261901 DOI: 10.1080/09593330.2023.2220891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Carbon dots (CDs), as a fascinating carbon nanomaterial, have important applications in various fields due to their unique properties. The physical and chemical properties of CDs can be fine-tuned using heteroatom doping and surface functionalisation. Here, we synthesised N-doped carbon dots (N-CDs) by reacting Citric acid, which serve as the carbon core, with twenty amino acids under microwave irradiation. The fluorescence quenching of each amino acid doped CDs by Hg(II) ions was experimentally measured. Then the effect of the molecular features and chemical properties of amino acids on the fluorescence quenching of N-CDs by Hg(II) ions was investigated by using the quantitative structure-property relationship (QSPR) method. Applying different machine learning techniques including correlation-based and ReliefF algorithm feature selection approaches to choose relevant descriptors, multi-linear regression, and support vector machine to construct QSPR model, some reliable and predictive models were developed. Based on the variables used throughout the final QSPR models, hydrophobic interactions, in addition to hydrogen bonding interactions, can be considered a major factor governing the photoluminescence behaviour of different N-CDs quenched by Hg(II) ions. N-CDs derived from amino acids bearing larger hydrophobic surfaces show greater fluorescence quenching, indicating that a greater capacity to interact with Hg(II) metal ions resulting in further fluorescence quenching.
Collapse
Affiliation(s)
- Ali Roozbahani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Maryam Salahinejad
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | | |
Collapse
|
6
|
Rizk M, Ramzy E, Toubar S, Mahmoud AM, A. El Hamd M, Alshehri S, Helmy MI. Bioinspired Carbon Dots-Based Fluorescent Sensor for the Selective Determination of a Potent Anti-Inflammatory Drug in the Presence of Its Photodegradation Products. ACS OMEGA 2024; 9:27517-27527. [PMID: 38947834 PMCID: PMC11209878 DOI: 10.1021/acsomega.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Herein, we synthesized biogenic carbon dots (CDs) with blue-shifted maximum excitation (λex/λem of 320/404 nm) from largely wasted tangerine seeds for the first time via a one-step hydrothermal method. The biogenic CDs exhibit a maximum excitation wavelength that overlaps with the absorption spectrum of ketorolac tromethamine (KETO) at 320 nm. The developed CDs serve as a turn-off fluorescent probe via an inner filter effect (IFE) quenching mechanism. The resulting CDs have high quantum yield (QY) (39% ± 2.89%, n = 5) and exhibited great performance toward KETO over a concentration range of 0.50-16.00 μg/mL with a limit of detection (LOD) = 0.17 μg/mL. The nanoprobe achieved a high % recovery in assaying KETO in tablet dosage form and had not been significantly affected by various interferents including co-formulated and co-administered drugs. The nanoprobe shows selectivity toward KETO, even in the presence of its photocatalytic degradation products. It can effectively investigate the elimination of KETO from aquatic systems and test its stability in pharmaceutical preparations. The developed nanoprobe underwent a comprehensive evaluation of its environmental impact using analytical eco-scale (AES), complex green analytical procedure index (Complex GAPI), and the Analytical GREEnness calculator (AGREE). The sustainability of the developed nano sensor was assessed and compared to the reported metal-based quantum dots probe for KETO using the innovative RGB 12 model, considering 12 white analytical chemistry (WAC) perspectives.
Collapse
Affiliation(s)
- Mohamed Rizk
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Emad Ramzy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Safaa Toubar
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Amr M. Mahmoud
- Department
of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed A. El Hamd
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa I. Helmy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| |
Collapse
|
7
|
Stacy BJ, Nagasaki K, Korgel BA. Luminescent Silicon Nanocrystals as Metal Ion Sensors. ACS NANO 2024; 18:15744-15753. [PMID: 38838260 DOI: 10.1021/acsnano.4c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
At relatively low concentrations in aqueous solution, Fe3+, Fe2+, Cu2+, and Ni2+ quench the photoluminescence (PL) of the undecenoic acid-capped silicon (Si) nanocrystals. The PL could be restored by adding a chelating agent, such as ethylenediaminetetraacetic acid (EDTA), to remove the ions. Fe3+ and Cu2+ also significantly increase the PL lifetime. Other metal ions, including Cd2+, Mn2+, Pb2+, Zn2+, In3+, K+, and Ca2+, had no effect on the Si nanocrystal PL. The limits of detection (LODs) for Fe3+ and Cu2+ of 370 and 150 nM, respectively, are low enough for metal ion sensing applications.
Collapse
Affiliation(s)
- Benjamin J Stacy
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Kara Nagasaki
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Brian A Korgel
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| |
Collapse
|
8
|
Xu J, Huang BB, Lai CM, Lu YS, Shao JW. Advancements in the synthesis of carbon dots and their application in biomedicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112920. [PMID: 38669742 DOI: 10.1016/j.jphotobiol.2024.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.
Collapse
Affiliation(s)
- Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Bing Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
9
|
Nguyen KG, Huš M, Baragau IA, Bowen J, Heil T, Nicolaev A, Abramiuc LE, Sapelkin A, Sajjad MT, Kellici S. Engineering Nitrogen-Doped Carbon Quantum Dots: Tailoring Optical and Chemical Properties through Selection of Nitrogen Precursors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310587. [PMID: 38546418 DOI: 10.1002/smll.202310587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Indexed: 06/13/2024]
Abstract
The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.
Collapse
Affiliation(s)
- Kiem G Nguyen
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Matej Huš
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, SI-1001, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, Ljubljana, 1000, Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia (ZVKDS), Poljanska 40, Ljubljana, 1000, Slovenia
| | - Ioan-Alexandru Baragau
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - James Bowen
- School of Engineering and Innovation, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Tobias Heil
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Adela Nicolaev
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Laura Elena Abramiuc
- National Institute of Materials Physics, Atomistilor 405A, Magurele, Ilfov, 077125, Romania
| | - Andrei Sapelkin
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Muhammad Tariq Sajjad
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | - Suela Kellici
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| |
Collapse
|
10
|
Sarà M, Giofrè SV, Abate S, Trapani M, Verduci R, D’Angelo G, Castriciano MA, Romeo A, Neri G, Monsù Scolaro L. Absorption and Fluorescence Emission Investigations on Supramolecular Assemblies of Tetrakis-(4-sulfonatophenyl)porphyrin and Graphene Quantum Dots. Molecules 2024; 29:2015. [PMID: 38731505 PMCID: PMC11085775 DOI: 10.3390/molecules29092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The one-pot synthesis of N-doped graphene quantum dots (GQDs), capped with a positively charged polyamine (trien), has been realized through a microwave-assisted pyrolysis on solid L-glutamic acid and trien in equimolar amounts. The resulting positively charged nanoparticles are strongly emissive in aqueous solutions and are stable for months. The interaction with the anionic tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) has been investigated at neutral and mild acidic pH using a combination of UV/vis absorption spectroscopy together with static and time-resolved fluorescence emission. At pH = 7, the experimental evidence points to the formation of a supramolecular adduct mainly stabilized by electrostatic interactions. The fluorescence emission of the porphyrin is substantially quenched while GQDs remain still emissive. On decreasing the pH, protonation of TPPS4 leads to formation of porphyrin J-aggregates through the intermediacy of the charged quantum dots.
Collapse
Affiliation(s)
- Mariachiara Sarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Salvatore Abate
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Mariachiara Trapani
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| | - Rosaria Verduci
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.V.); (G.D.)
| | - Giovanna D’Angelo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.V.); (G.D.)
| | - Maria Angela Castriciano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
| | - Andrea Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| | - Giovanni Neri
- Dipartimento di Ingegneria, University of Messina, Contrada di Dio, 98158 Messina, Italy;
| | - Luigi Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy; (M.S.); (S.V.G.); (S.A.); (M.A.C.); (A.R.)
- CNR—ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31, 98166 Messina, Italy;
| |
Collapse
|
11
|
Tohamy HAS. Fluorescence 'Turn-on' Probe for Chromium Reduction, Adsorption and Detection Based on Cellulosic Nitrogen-Doped Carbon Quantum Dots Hydrogels. Gels 2024; 10:296. [PMID: 38786213 PMCID: PMC11120953 DOI: 10.3390/gels10050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
This paper proposes a new, highly effective fluorescence test for Cr(VI) detection. This method utilizes a hydrogel composed of hydroxyethyl cellulose (HEC), nitrogen-doped carbon quantum dots (N-CQDs), and poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (AMPS). The N-CQDs were successfully synthesized using a simple microwave method, and then conjugated with HEC and AMPS. The higher adsorption (99.41%) and higher reduction rate in H1 likely stems from both the presence of N-CQDs (absent in HB) and their increased free functional groups (compared to H2/H3, where N-CQDs block them). This facilitates the release (desorption) of Cr(VI) from the hydrogels, making it more available for reduction to the less toxic Cr(III). The fluorescent brightness of the HEC-N-CQDs-g-poly(AMPS) hydrogel increases gradually when Cr(VI) is added in amounts ranging from 15 to 120 mg/L. The fluorescent enhancement of the HEC-N-CQDs-g-poly(AMPS) hydrogel appeared to exhibit a good linear relationship with the 15-120 mg of the Cr(VI) concentration, with a detection limit of 0.0053 mg/L, which is lower than the standard value published by WHO. Our study found that the HEC-N-CQDs-g-poly(AMPS) hydrogel served effectively as a fluorescent probe for Cr(VI) detection in aqueous solutions, demonstrating high sensitivity.
Collapse
Affiliation(s)
- Hebat-Allah S Tohamy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. 12622, Egypt
| |
Collapse
|
12
|
Kaczmarek A, Wisniewska A, Mościcki T, Hoffman J. The Luminescence of Laser-Produced Carbon Nanodots: The Effect of Aggregation in PEI Solution. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1573. [PMID: 38612087 PMCID: PMC11012247 DOI: 10.3390/ma17071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Carbon nanodots (CNDs) produced in pure water by the ablation of graphite with a nanosecond laser pulse exhibit weak photoluminescence. A small addition of polyethyleneimine (PEI) to the aqueous suspension of CNDs causes a significant increase in emissions. This paper presents experimental and theoretical studies of the emission properties of CND/PEI systems. The obtained CNDs responded to even trace amounts of PEI in solution (~0.014% v/v), resulting in a significant increase in the initial weak blue emission of CNDs and PEI taken separately. Morphology and size measurements showed that particle aggregation occurred in the presence of the polymer. A decrease in the calculated Stokes shift values was observed with increasing PEI content in the solution. This indicates a reduction in the number of non-radiative transitions, which explains the increase in the emission intensity of the CND/PEI systems. These results therefore confirmed that the increase in the emission of CND/PEI systems is caused by particle aggregation. Kinetic studies proved that the process is controlled mainly by diffusion, the initial stage of which has a dominant influence on determining the optical properties of the system.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland;
| | - Agnieszka Wisniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Tomasz Mościcki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland;
| | - Jacek Hoffman
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland;
| |
Collapse
|
13
|
Kumar V, Mirsky SK, Shaked NT, Gazit E. High Quantum Yield Amino Acid Carbon Quantum Dots with Unparalleled Refractive Index. ACS NANO 2024; 18:2421-2433. [PMID: 38190624 PMCID: PMC10811667 DOI: 10.1021/acsnano.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Carbon quantum dots (CQDs) are one of the most promising types of fluorescent nanomaterials due to their exceptional water solubility, excellent optical properties, biocompatibility, chemical inertness, excellent refractive index, and photostability. Nitrogen-containing CQDs, which include amino acid based CQDs, are especially attractive due to their high quantum yield, thermal stability, and potential biomedical applications. Recent studies have attempted to improve the preparation of amino acid based CQDs. However, the highest quantum yield obtained for these dots was only 44%. Furthermore, the refractive indices of amino acid derived CQDs were not determined. Here, we systematically explored the performance of CQDs prepared from all 20 coded amino acids using modified hydrothermal techniques allowing more passivation layers on the surface of the dots to optimize their performance. Intriguingly, we obtained the highest refractive indices ever reported for any CQDs. The values differed among the amino acids, with the highest refractive indices found for positively charged amino acids including arginine-CQDs (∼2.1), histidine-CQDs (∼2.0), and lysine-CQDs (∼1.8). Furthermore, the arginine-CQDs reported here showed a nearly 2-fold increase in the quantum yield (∼86%) and a longer decay time (∼8.0 ns) compared to previous reports. In addition, we also demonstrated that all amino acid based CQD materials displayed excitation-dependent emission profiles (from UV to visible) and were photostable, water-soluble, noncytotoxic, and excellent for high contrast live cell imaging or bioimaging. These results indicate that amino acid based CQD materials are high-refractive-index materials applicable for optoelectronic devices, bioimaging, biosensing, and studying cellular organelles in vivo. This extraordinary RI may be highly useful for exploring cellular elements with different densities.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Simcha K. Mirsky
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natan T. Shaked
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
14
|
Targhan H, Rezaei A, Aliabadi A, Ramazani A, Zhao Z, Shen X, Zheng H. Photocatalytic removal of imidacloprid pesticide from wastewater using CdS QDs passivated by CQDs containing thiol groups. Sci Rep 2024; 14:530. [PMID: 38177240 PMCID: PMC10766997 DOI: 10.1038/s41598-023-49972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Over the past decade, CdS QDs have become versatile semiconductors. Surface modification of CdS QDs has become an interesting case study, as it can eliminate surface defects and improve their photochemical properties. In this study, we report a new strategy of using carbon quantum dots containing a large number of thiol groups (CQDs-SH) as a passivating agent for the stabilization of CdS quantum dots (QDs). Various characterization techniques have clearly revealed that the CdS QDs have been successfully passivated by CQDs-SH. The photocatalytic performance of CQDs-SH/CdS QDs was investigated for the degradation of the insecticide imidacloprid from an aqueous solution. Parameters affecting the photodegradation process, including the light source, photocatalyst amount, initial concentration of the pollutant, radiation time, pH, oxidizing agent, and temperature, were investigated. Furthermore, the HPLC technique was applied to quantitatively analyze imidacloprid and its degradation products. The results of the HPLC analysis revealed that under simulated visible light at pH 9, imidacloprid scarcely existed after 90 min of irradiation (90.13% degradation). The LC-MS method was also used to detect the degradation products and investigate the mechanism of photodegradation of the pesticide. The results showed that the CQDs-SH/CdS QDs composite was a promising photocatalyst for the degradation of imidacloprid in wastewater.
Collapse
Affiliation(s)
- Homa Targhan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Zhefei Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xinyi Shen
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
15
|
Qurtulen, Ahmad A. Green tea waste-derived carbon dots: efficient degradation of RhB dye and selective sensing of Cu 2+ ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121630-121646. [PMID: 37957492 DOI: 10.1007/s11356-023-30735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Herein, we have synthesized carbon dots (CDs) using a one-step hydrothermal method from green tea waste, a biomass-derived source with high fluorescent properties and excellent solubility in water. The synthesis of CDs was confirmed through a comprehensive range of characterization techniques, including HRTEM (high-resolution transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and EDX (energy-dispersive X-ray spectroscopy). The optical properties of the synthesized CDs were assessed using UV-Vis spectroscopy and fluorescence (FL) spectroscopy. The CDs displayed exceptional stability across a wide pH range and various concentrations. Moreover, these CDs exhibited a photoluminescence quantum yield (PLQY) of 21.6%, indicating their efficiency in emitting fluorescent light upon excitation. The CDs also showcased their prowess in fluorometrically detecting Cu2+ ions, displaying high sensitivity and selectivity. They presented two distinct linear ranges: 0.02 to 50 µM and 50 to 100 µM, with recovery rates ranging from 94.2 to 104.06%. Moreover, under visible light irradiation, the CDs exhibited significant efficiency in the photocatalytic removal of dyes. Specifically, the CDs achieved degradation rate of 97.89% for Rhodamine B (RhB) within a 30-min irradiation period. In the context of RhB adsorption, it is evident that the experimental data align more closely with the Freundlich isotherm than the Langmuir isotherm. This is substantiated by a higher R2 value (0.97) for the Freundlich isotherm model compared to the Langmuir adsorption isotherm model (0.93). Notably, the adsorption kinetics was effectively described by pseudo first-order kinetics models. Overall, these results highlight the promising potential of CDs in applications such as environmental remediation and waste treatment processes due to their photocatalytic and sensing capabilities.
Collapse
Affiliation(s)
- Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Anees Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
16
|
Ahmed HB, Mikhail MM, Abdallah AEM, El-Shahat M, Emam HE. Pyrimidine-5-carbonitrile derivatives as sprout for CQDs proveniences: Antitumor and anti-inflammatory potentiality. Bioorg Chem 2023; 141:106902. [PMID: 37806048 DOI: 10.1016/j.bioorg.2023.106902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
A comparative study is proposed to show the effect of variation in the heteroatoms in the main skeleton of CQDs proveniences, on their affinity for nucleation of CQDs, as anti-inflammatory and anticancer drugs. Heterocyclic-based CQDs sprout was successfully exploited for preparation of three CQDs proveniences, named as; 2-(2,5-dimethoxyphenyl)-4,6-dioxo-6,11-dihydro-4H-pyrimido[2,1-b] quinazoline-3-carbonitrile (compound A), 2-(2,5-dimethoxyphenyl)-4,6-dioxo-4H,6H-benzo[e]pyrimido[2,1-b][1,3]oxazine-3-carbonitrile (compound S) and 2-(2,5-dimethoxyphenyl)-4,6-dioxo-4H,6H-benzo[e]pyrimido[2,1-b][1,3] thiazine-3-carbonitrile (compound T). Chemical formulas of CQDs proveniences & CQDs were verified via FTIR, 1HNMR, 13CNMR & XRD. Particle size of TM-CQDs, A-CQDs, S-CQDs & T-CQDs were estimated to be 3.7 ± 1.4, 4.6 ± 1.6, 5.9 ± 1.6 nm and 3.0 ± 1.3 nm, respectively. All of CQDs proveniences & CQDs were examined for their affinity as anti-inflammatory drugs via Griess assay. CQDs ingrained from TM (TM-CQDs) were detected with the highest NO inhibition% by increasing its concentration from 10 up to 100 μM to be 40 % to 89 %, respectively. Moreover, their anti-tumor performance against MCF-7: breast Adenocarcinoma cell line was approved via sulforhodamine B assay, whereas, IC50 was evaluated for TM-CQDs, A-CQDs, S-CQDs and T-CQDs to be 38.16, 36.09, 100 and 100 μg/ml, respectively.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt.
| | - Mary M Mikhail
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Amira E M Abdallah
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
17
|
Dubey P. An overview on animal/human biomass-derived carbon dots for optical sensing and bioimaging applications. RSC Adv 2023; 13:35088-35126. [PMID: 38046631 PMCID: PMC10690874 DOI: 10.1039/d3ra06976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Over the past decade, carbon dots (CDs) have emerged as some of the extremely popular carbon nanostructures for diverse applications. The advantages of sustainable CDs, characterized by their exceptional photoluminescence (PL), high water solubility/dispersibility, non-toxicity, and biocompatibility, substantiate their potential for a wide range of applications in sensing and biology. Moreover, nature offers plant- and animal-derived precursors for the sustainable synthesis of CDs and their doped variants. These sources are not only readily accessible, inexpensive, and renewable but are also environmentally benign green biomass. This review article presents in detail the production of sustainable CDs from various animal and human biomass through bottom-up synthetic methods, including hydrothermal, microwave, microwave-hydrothermal, and pyrolysis methods. The resulting CDs exhibit a uniform size distribution, possibility of heteroatom doping, surface passivation, and remarkable excitation wavelength-dependent/independent emission and up-conversion PL characteristics. Consequently, these CDs have been successfully utilized in multiple applications, such as bioimaging and the detection of various analytes, including heavy metal ions. Finally, a comprehensive assessment is presented, highlighting the prospects and challenges associated with animal/human biomass-derived CDs for multifaceted applications.
Collapse
Affiliation(s)
- Prashant Dubey
- Centre of Material Sciences, Institute of Interdisciplinary Studies (IIDS), University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
18
|
Pawar S, Duadi H, Friedman Gohas M, Cohen Y, Fixler D. Bioimaging based on Poly(ethylenimine)-Coated Carbon Dots and Gold Nanoparticles for pH Sensing and Metal Enhanced Fluorescence. ACS APPLIED BIO MATERIALS 2023; 6:4935-4943. [PMID: 37870948 DOI: 10.1021/acsabm.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
When exposed to specific light wavelengths, carbon dots (CDs), which tend to be fluorescent, can emit colorful light. It provides them with a lot of adaptability for different applications including bioimaging, optoelectronics, and even environmental sensing. Poly(ethylenimine) (PEI) coated carbon dots (PEI-CDs) with a long emission wavelength were synthesized via the hydrothermal method. The resultant CDs show strong fluorescence with quantum yield up to 20.2%. The PEI-CDs exist with distinct pH-sensitive features with pH values in the range of 2-14. The optical characteristics of CDs are pH-responsive due to the presence of different amine groups on PEI, which is a functional polycationic polymer. One of the most widely employed nanoparticles for improving the fluorescence plasmonic characteristics of a nanocomposite is gold. Gold nanoparticles were coupled with PEI-CDs in this assay by using the EDC-NHS coupling to increase the photoluminescence property of the PEI-CDs by using the metal-enhanced fluorescence approach. In the presence of gold nanoparticles, the fluorescence is enhanced 5-6 times. The likely mechanism in our investigation was primarily derived from enhancement of the intrinsic radiative decay rate rather than the local electric field impact. Moreover, PEI-CDs can be used as a bioimaging agent, as these molecules are nontoxic to the cells, and the positively charged PEI-CDs have the potential for nuclear targeting, allowing for electrostatic contact with DNA in the nucleus. This finding will expand the application that the PEI-CDs can be used in the future for targeted imaging applications.
Collapse
Affiliation(s)
- Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Moran Friedman Gohas
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, Ramat-Gan 52621, Israel
| | - Yoram Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- IVF Unit, Chaim Sheba Medical Centre, Tel-Hashomer, Ramat-Gan 52621, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
19
|
Thonghlueng J, Ngernpimai S, Chuaephon A, Phanchai W, Wiwasuku T, Wanna Y, Wiratchawa K, Intharah T, Thanan R, Sakonsinsiri C, Puangmali T. Dual-Responsive Carbon Quantum Dots for the Simultaneous Detection of Cytosine and 5-Methylcytosine Interpreted by a Machine Learning-Assisted Smartphone. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40141-40152. [PMID: 37585565 DOI: 10.1021/acsami.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
DNA methylation is an epigenetic alteration that results in 5-methylcytosine (5-mC) through the addition of a methyl group to the fifth carbon of a cytosine (C) residue. The methylation level, the ratio of 5-mC to C, in urine might be related to the whole-body epigenetic status and the occurrence of common cancers. To date, never before have any nanomaterials been developed to simultaneously determine C and 5-mC in urine samples. Herein, a dual-responsive fluorescent sensor for the urinary detection of C and 5-mC has been developed. This assay relied on changes in the optical properties of nitrogen-doped carbon quantum dots (CQDs) prepared by microwave-assisted pyrolysis. In the presence of C, the blue-shifted fluorescence intensity of the CQDs increased. However, fluorescence quenching was observed upon the addition of 5-mC. This was primarily due to photoinduced electron transfer as confirmed by the density functional theory calculation. In urine samples, our sensitive fluorescent sensor had detection limits for C and 5-mC of 43.4 and 74.4 μM, respectively, and achieved satisfactory recoveries ranging from 103.5 to 115.8%. The simultaneous detection of C and 5-mC leads to effective methylation level detection, achieving recoveries in the range of 104.6-109.5%. Besides, a machine learning-enabled smartphone was also developed, which can be effectively applied to the determination of methylation levels (0-100%). These results demonstrate a simple but very effective approach for detecting the methylation level in urine, which could have significant implications for predicting the clinical prognosis.
Collapse
Affiliation(s)
- Janpen Thonghlueng
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sawinee Ngernpimai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Adulvit Chuaephon
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theanchai Wiwasuku
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yupaporn Wanna
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kannika Wiratchawa
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thanapong Intharah
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
20
|
Bhattacharya T, Shin GH, Kim JT. Carbon Dots: Opportunities and Challenges in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15031019. [PMID: 36986879 PMCID: PMC10059251 DOI: 10.3390/pharmaceutics15031019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recently, carbon dots (CDs) have been actively studied and reported for their various properties. In particular, the specific characteristics of carbon dots have been considered as a possible technique for cancer diagnosis and therapy. This is also a cutting-edge technology that offers fresh ideas for treating various disorders. Though carbon dots are still in their infancy and have not yet shown their value to society, their discovery has already resulted in some noteworthy advancements. The application of CDs indicates conversion in natural imaging. Photography using CDs has demonstrated extraordinary appropriateness in bio-imaging, the discovery of novel drugs, the delivery of targeted genes, bio-sensing, photodynamic therapy, and diagnosis. This review seeks to provide a comprehensive understanding of CDs, including their benefits, characteristics, applications, and mode of action. In this overview, many CD design strategies will be highlighted. In addition, we will discuss numerous studies on cytotoxic testing to demonstrate the safety of CDs. The current study will address the production method, mechanism, ongoing research, and application of CDs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (G.H.S.); (J.T.K.)
| |
Collapse
|
21
|
Yang S, Li Y, Chen L, Wang H, Shang L, He P, Dong H, Wang G, Ding G. Fabrication of Carbon-Based Quantum Dots via a "Bottom-Up" Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205957. [PMID: 36610043 DOI: 10.1002/smll.202205957] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.
Collapse
Affiliation(s)
- Siwei Yang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongqiang Li
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Wang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuyang Shang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Guqiao Ding
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Tony Elizabeth A, James E, Infant Jesan L, Denis Arockiaraj S, Edwin Vasu A. Green synthesis of value-added nitrogen doped carbon quantum dots from Crescentia cujete fruit waste for selective sensing of Fe3+ ions in aqueous medium. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Synthesis, characterization and potential sensing application of carbon dots synthesized via the hydrothermal treatment of cow milk. Sci Rep 2022; 12:22495. [PMID: 36577768 PMCID: PMC9797560 DOI: 10.1038/s41598-022-26906-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Carbon quantum dots (CQDs) were synthesized in this study by hydrothermally treating cow milk. The procedure is simple, non-hazardous to the environment, and does not necessitate the use of any special instruments or chemicals. CQDs were practically almost circular when they were manufactured and had an average size of 7 nm. Carbon (67.36%), oxygen (22.73%), and nitrogen (9.91%) comprised the majority of their composition. They feature broad excitation-emission spectra, excitation-dependent emission, and temperature-dependent photoluminescence. They remained quite stable in the presence of a lot of salt, UV radiation, and storage time. Because luminescence quenching mechanisms are sensitive to and selective for Sn2+, they can be employed to create a nanosensor for detecting Sn2+.
Collapse
|