1
|
Shakeel V, Hussain Gul I, John P, Bhatti A. Biocompatible gelatin-coated ferrite nanoparticles: A magnetic approach to advanced drug delivery. Saudi Pharm J 2024; 32:102066. [PMID: 38726226 PMCID: PMC11079519 DOI: 10.1016/j.jsps.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Nanotechnology has transformed drug delivery, offering opportunities to enhance treatment outcomes while minimizing adverse effects. This study focuses on gelatin-coated cobalt and manganese ferrite nanoparticles for potential drug delivery applications. The synthesis involved a co-precipitation method, and the nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and vibrating sample magnetometer (VSM). Results revealed stable structures, distinct chemical features introduced by gelatin coating, and unique magnetic properties. The hemolysis assay demonstrated reduced hemolytic activity with gelatin coating, enhancing biocompatibility. Drug release studies indicated differential release profiles, with gelatin-coated cobalt ferrite exhibiting higher drug release compared to gelatin-coated manganese ferrite. The Higuchi model supported diffusion-controlled drug release for gelatin-coated cobalt ferrite. These findings suggest the potential of gelatin-coated ferrite nanoparticles for controlled and targeted drug delivery, highlighting their significance in advancing nanomedicine.
Collapse
Affiliation(s)
- Varda Shakeel
- Thermal Transport Laboratory, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Iftikhar Hussain Gul
- Thermal Transport Laboratory, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Peter John
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Attya Bhatti
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Alahmari F, Khan FA, Sozeri H, Sertkol M, Jaremko M. Electrospun Cu-Co ferrite nanofibers: synthesis, structure, optical and magnetic properties, and anti-cancer activity. RSC Adv 2024; 14:7540-7550. [PMID: 38440265 PMCID: PMC10910578 DOI: 10.1039/d3ra08087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
In this study, we investigated Cu-Co ferrite nanofibers (NFs) that were synthesized for the first time employing the electrospinning technique. The structure, phase purity and crystallite size of all the prepared NFs were revealed by powder X-ray diffraction (PXRD) analysis. The NFs crystallized in the Fd3̄m (no. 227) space group and the cation distribution arrangement over distinct sites in their structure was analyzed. Scanning electron microscopy (SEM) together with energy-dispersive X-ray (EDX) spectroscopy analysis showed the microstructure of the NFs and verified their expected chemical compositions. High-resolution transmission electron microscopy (TEM) images confirmed the fibrous nature and the construction of the NFs. The band gap energies derived from the UV-vis reflectance spectra showed a blue shift with an increase in the amount of Cu in the sample from 1.42 eV to 1.86 eV. Magnetization (M) as a function of magnetic field (H) measurements performed at ambient and low temperatures showed the ferrimagnetic behavior of all the NFs. The magnetic parameters including coercivity (Hc), saturation magnetization (Ms), remanent magnetization (Mr), and squareness ratio were determined from the recorded magnetization curves. At 300 K, Ms was reduced from 78.8 to 42.4 emu g-1, Mr reduced from 22.8 to 7.6 emu g-1 and the Bohr magneton reduced from 3.3 to 1.8μB with an increase in the content of Cu in the samples. The same trend was observed at 10 K, where Ms was reduced from 93.7 to 50.9 emu g-1, Mr reduced from 60.9 to 35.9 emu g-1 and the Bohr magneton reduced from 3.94 to 2.16μB. Alternatively, Hc has the highest values for x = 0 (850 Oe at 300 K and 5220 Oe at 10 K) and x = 0.6 (800 Oe at 300 K and 5400 Oe at 10 K). The anti-cancer activity of the NFs was evaluated using the MTT cell viability assay, showing a reduction in the viability of both HCT-116 and HeLa cancer cells compared to non-cancerous HEK-293 cells after treatment with the NFs. Apoptotic activity was examined by DAPI staining, where treatment with the NFs induced chromatin condensation and nuclear disintegration in HCT-116 cells.
Collapse
Affiliation(s)
- Fatimah Alahmari
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University P. O. Box 1982 31441 Dammam Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University P. O. Box 1982 31441 Dammam Saudi Arabia
| | - H Sozeri
- TUBITAK-UME, National Metrology Institute P. O. Box 54 41470 Gebze Kocaeli Turkey
| | - M Sertkol
- Department of Basic Science, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 34212 Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
3
|
Rehman S, Jermy BR, Rather IA, Sabir JSM, Aljameel SS, Almessiere MA, Slimani Y, Khan FA, Baykal A. Pr 3+ Ion-Substituted Ni-Co Nano-Spinel Ferrites: Their Synthesis, Characterization, and Biocompatibility for Colorectal Cancer and Candidaemia. Pharmaceuticals (Basel) 2023; 16:1494. [PMID: 37895966 PMCID: PMC10610135 DOI: 10.3390/ph16101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotherapeutics have attracted tremendous research interest in the modern pharmaceutical and biomedical industries due to their potential for drug development, targeted delivery, and therapeutic applications. Therefore, the current study underpins the synthesis of praseodymium ion (Pr3+)-substituted Ni0.5Co0.5Fe2O4 nano-spinel ferrites, (Co0.5Ni0.5PrxFe2-xO4 (0.0 ≤ x ≤ 0.10) NSFs, CoNiPr (x ≤ 0.10) NSFs) via the sonochemical route for its application as a nanotherapeutic treatment option. The synthesized nanomaterial was characterized using various analytical techniques, including scanning/transmission electron microscopy (SEM) and X-ray powder diffractometry (XRD). After substitution with Pr (x = 0.08), the particle size, polydispersity index, and zeta potential analysis indicated an increase in hydrodynamic diameter, with an average zeta potential value of -10.2 mV. The investigation of CoNiPr (x ≤ 0.10) NSFs on colorectal cancer (HCT-116) cells demonstrated a significant effect on cancer cell viability. The inhibitory concentration (IC50) of CoNiPr (x ≤ 0.10) NSFs was between 46 ± 0.91 and 288 ± 8.21 for HCT-116 cells. The effect of CoNiPr (x ≤ 0.10) NSFs on normal human embryonic kidney (HEK-293) cells showed a reduction in the HEK-293 cell viability; however, the cell viability was better than HCT-116. The NSFs treatment also showed morphological changes in cancer cell nuclei, as revealed by DAPI (4',6-diamidino-2-phenylindole), nuclear disintegration, and chromatic fragmentation, which are signs of apoptosis or programmed cell death. To examine the potential antifungal effects of CoNiPr NSFs on Candida albicans, known to cause candidemia among cancer patients, the viability of the cells was assessed post treatment with CoNiPr (x ≤ 0.10) NSFs. The increasing ratio of dopant had a moderate impact on the percentage of cell viability loss of 42, 44, and 43% with x = 0.06, 0.08, and 0.10, respectively. These results reinforce that increased dopant significantly impacts the antifungal properties of the synthesized nanomaterial. These findings support the idea that NSFs might be useful in pharmaceuticals.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Balasamy Rabindran Jermy
- Department of Nanomedicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suhailah S. Aljameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Munirah A. Almessiere
- Department of Biophysics Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Yassine Slimani
- Department of Biophysics Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Firdos A. Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, Florya, Istanbul 34295, Turkey;
| |
Collapse
|
4
|
Wongso H, Kurniawan A, Forentin AM, Susilo VY, Setiadi Y, Mahendra I, Febrian MB, Rosdianto AM, Setiawan I, Goenawan H, Susianti S, Supratman U, Widyasari EM, Wibawa TH, Sriyani ME, Halimah I, Lesmana R. New hybrid radio-fluorescent probes [ 131I]-BPF-01 and [ 131I]-BPF-02 for visualisation of cancer cells: Synthesis and preliminary in vitro and ex vivo evaluations. Heliyon 2023; 9:e20710. [PMID: 37860547 PMCID: PMC10582398 DOI: 10.1016/j.heliyon.2023.e20710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
We synthesised and biologically evaluated two new hybrid probes [131I]BPF-01 and [131I]BPF-02 which were built from three structural entities: benzothiazole-phenyl, fluorescein isothiocyanate (FITC), and iodine-131. These probes were designed for potential applications in assisting surgical procedures of solid cancers. The cytotoxicity study demonstrated that fluorescent probes BPF-01 (31.23 μg/mL) and BPF-02 (250 μg/mL) were relatively not toxic to normal immortalized human keratinocytes (HaCaT) cells, as indicated by the percentage of cell survival above 50 %. Furthermore, both probes displayed low to moderate anticancer activity against the breast cancer cells (MDA-MB-231) and prostate cancer cells (LNCaP and DU-145). The probe BPF-01 apparently showed an accumulation in the tumour tissues, as suggested by ex vivo fluorescence examinations. In addition, the cellular uptake study suggests that hybrid probe [131I]-BPF-01 was potentially accumulated in the MCF-7 cell line with the highest uptake of 16.11 ± 1.52 % after 2 h of incubation, approximately 50-fold higher than the accumulation of iodine-131 (control). The magnetic bead assay suggests that [131I]-BPF-02 and [131I]-BPF-02 showed a promising capability to interact with translocator protein 18 kDa (TSPO). Moreover, the computational data showed that the binding scores for ligands 7-8, BPF-01 and BPF-02, and [131I]-BPF-01 and [131I]-BPF-02 in the TSPO were considerably high. Accordingly, fluorescent probes BPF-01 and BPF-02, and hybrid probes [131I]BPF-01 and [131I]BPF-02 can be further developed for targeting cancer cells during intraoperative tumour surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Alfian M. Forentin
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Veronika Y. Susilo
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Aziiz M. Rosdianto
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Setiawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Unang Supratman
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
5
|
Ning S, Sanchis-Gual R, Franco C, Wendel-Garcia PD, Ye H, Veciana A, Tang Q, Sevim S, Hertle L, Llacer-Wintle J, Qin XH, Zhu C, Cai J, Chen X, Nelson BJ, Puigmartí-Luis J, Pané S. Magnetic PiezoBOTs: a microrobotic approach for targeted amyloid protein dissociation. NANOSCALE 2023; 15:14800-14808. [PMID: 37646185 PMCID: PMC10517098 DOI: 10.1039/d3nr02418k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Piezoelectric nanomaterials have become increasingly popular in the field of biomedical applications due to their high biocompatibility and ultrasound-mediated piezocatalytic properties. In addition, the ability of these nanomaterials to disaggregate amyloid proteins, which are responsible for a range of diseases resulting from the accumulation of these proteins in body tissues and organs, has recently gained considerable attention. However, the use of nanoparticles in biomedicine poses significant challenges, including targeting and uncontrolled aggregation. To address these limitations, our study proposes to load these functional nanomaterials on a multifunctional mobile microrobot (PiezoBOT). This microrobot is designed by coating magnetic and piezoelectric barium titanate nanoparticles on helical biotemplates, allowing for the combination of magnetic navigation and ultrasound-mediated piezoelectric effects to target amyloid disaggregation. Our findings demonstrate that acoustically actuated PiezoBOTs can effectively reduce the size of aggregated amyloid proteins by over 80% in less than 10 minutes by shortening and dissociating constituent amyloid fibrils. Moreover, the PiezoBOTs can be easily magnetically manipulated to actuate the piezocatalytic nanoparticles to specific amyloidosis-affected tissues or organs, minimizing side effects. These biocompatible PiezoBOTs offer a promising non-invasive therapeutic approach for amyloidosis diseases by targeting and breaking down protein aggregates at specific organ or tissue sites.
Collapse
Affiliation(s)
- Shen Ning
- Boston University School of Medicine, Boston, MA, USA
| | - Roger Sanchis-Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Carlos Franco
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Hao Ye
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Andrea Veciana
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Qiao Tang
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Semih Sevim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Lukas Hertle
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Joaquin Llacer-Wintle
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, CH-8093 Zürich, Switzerland
| | - Caihong Zhu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiangzhong Chen
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), 08028 Barcelona, Spain.
- ICREA, Institució Catalana de Reserca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannestrasse 3, CH-8092 Zürich, Switzerland.
| |
Collapse
|
6
|
Metallic Implant Surface Activation through Electrospinning Coating of Nanocomposite Fiber for Bone Regeneration. Int J Biomater 2023; 2023:1332814. [PMID: 36909981 PMCID: PMC10005868 DOI: 10.1155/2023/1332814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
There is a critical need in orthopedic and orthodontic clinics for enhanced implant-bone interface contact to facilitate the quick establishment of a strong and durable connection. Surface modification by bioactive multifunctional materials is a possible way to overcome the poor osteoconductivity and the potential infection of Ti-based implants. Ti-25Zr biometallic alloy was prepared by powder metallurgy technique and then coated by Nano-composite fiber using electrospinning. Ceramic Nanocompound (CaTiO3, BaTiO3) was used as filler material and individually added to polymeric matrices constructed from the blend of polycaprolactone/chitosan. Using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and wettability, respectively, the morphology, chemical analysis, surface roughness, and contact angle measurements of the samples were evaluated. The result shows a significant improvement in cell viability, proliferation, and ALP activity for coated samples compared to noncoated samples. PCL/Chitosan/Nano-CaTiO3 (CA1) recorded remarkable enhancement from the surface-coated samples, demonstrating a significantly higher cell viability value after seven days of MC3T3-E1 cell culture, reaching 271.56 ± 13.15%, and better cell differentiation with ALP activity reaching 5.61 ± 0.35 fold change for the same culture time. PCL/Chitosan/Nano-BaTiO3 (BA1) also shows significant improvement in cell viability by 181.63 ± 17.87% and has ALP activity of 3.97 ± 0.67 fold change. For coated samples, cell proliferation likewise exhibits a considerable temporal increase; the improvement reaches 237.53% for (CA1) and 125.16% for (BA1) in comparison with uncoated samples (bare Ti-25Zr). The coated samples resist bacteria in the antibacterial test compared to the noncoated samples with no inhibition zone. This behavior suggests that a Nanocomposite fiber coat containing an active ceramic Nanocompound (CaTiO3, BaTiO3) promotes cell growth and holds promise for orthodontic and orthopedic bioapplication.
Collapse
|