1
|
Lemos ASDO, Granato JDT, Antinarelli LMR, Machado PDA, Campos LM, Bastos JPRC, Midlej VDV, Silva Neto AFD, Fabri RL, Coimbra ES. Lantana camara L. induces a multi-targeted cell death process in Leishmania amazonensis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118766. [PMID: 39222759 DOI: 10.1016/j.jep.2024.118766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
ETNOPHARMACOLOGICAL RELEVANCE Lantana camara L. is a species known for its broad spectrum of bioactivities and is commonly used in folk therapy to address inflammatory, dermatological, gastrointestinal, intestinal worms and protozoan diseases. It boasts a diverse array of secondary metabolites such as terpenes, flavonoids, and saponins. However, despite its rich chemical profile, there remains a scarcity of studies investigating its antileishmanial properties. AIM OF THE STUDY This research aims to explore the antileishmanial potential of L. camara, focusing also on its mechanism of action against Leishmania amazonensis. MATERIAL AND METHODS The ethanolic extract of L. camara leaves (LCE) was obtained through static maceration, and its phytoconstituents were identified using UFLC-QTOF-MS. The colorimetric MTT method was conducted to determine the effect of LCE on promastigotes of L. amazonensis and murine macrophages. The anti-amastigote activity was evaluated by counting intracellular parasites in macrophages after Giemsa staining. Additionally, investigations into the mechanisms underlying its action were conducted using cellular and biochemical approaches. RESULTS LCE exhibited significant activity against both promastigotes and intracellular amastigotes of L. amazonensis, with IC50 values of 12.20 μg/mL ± 0.12 and 7.09 μg/mL ± 1.24, respectively. These IC50 values indicate very promising antileishmanial activity, comparable to those found for the positive control miltefosine (5.10 μg/mL ± 1.79 and 8.96 μg/mL ± 0.50, respectively). Notably, LCE exhibited negligible cytotoxicity on macrophages (IC50 = 223.40 μg/mL ± 47.02), demonstrating selectivity towards host cells (SI = 31.50). The antileishmanial activity of LCE involved a multi-targeted cell death process, characterized by morphological and ultrastructural alterations observed through SEM and TEM analyses, as well as oxidative effects evidenced by the inhibition of trypanothione reductase, elevation of ROS and lipid levels, and mitochondrial dysfunction evaluated using DTNB, H2DCFDA, Nile red, and JC-1 assays. Additionally, extraction of ergosterol and double labeling with annexin V and PI revealed modifications to the organization and permeability of the treated parasite's plasma membrane. LCE was found to consist predominantly of terpenes, with lantadenes A, B, and C being among the eleven compounds identified through UFLC-QTOF-MS analysis. CONCLUSIONS The extract of L. camara presents a diverse array of chemical constituents, prominently featuring high terpene content, which may underlie its antileishmanial properties through a combination of apoptotic and non-apoptotic mechanisms of cell death induced by LCE. This study underscores the therapeutic potential of L. camara as a candidate for antileishmanial treatment, pending further validation.
Collapse
Affiliation(s)
- Ari Sérgio de Oliveira Lemos
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Juliana da Trindade Granato
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Patrícia de Almeida Machado
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Lara Melo Campos
- Bioactive Natural Products Laboratory, Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, CEP 36036-900, Brazil
| | - João Pedro Reis Costa Bastos
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Victor do Valle Midlej
- Laboratory of Cellular and Ultrastructure, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | - Adolfo Firmino da Silva Neto
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Rodrigo Luiz Fabri
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, CEP 36036-900, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
2
|
Sobhy M, AbouZid SF, Kirollos FN, El-Shiekh RA, Abdel-Sattar E. Lamiide and Ipolamiide: A Comprehensive Review of Their Bioactive Properties and Therapeutic Potential. Chem Biodivers 2024; 21:e202401069. [PMID: 39146389 DOI: 10.1002/cbdv.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
There is an increasing interest in using iridoids and secoiridoids as major targets for chemical synthesis and biosynthesis. Iridoids can be found in numerous species of Lamiaceae, Verbenaceae, Scrophulariaceae, and other families. Iridoids possess a chemical structure characterized by a cyclopentane ring with oxidative substituents, forming a six-membered ring. Various research groups have used these structures as valuable starting materials for regioselective and stereoselective synthesis. This approach has enormous potential for the production of bioactive alkaloids, prostaglandin analogues, and other bioactive natural compounds. Because there is currently no review on lamiide and ipolamiide, this review intends to pique researchers' interest in this vital topic of natural science for drug discovery from naturally occurring iridoids. Lamiide and ipolamiide have the potential to be useful tools in the pharmaceutical sector, enabling the use of these plant metabolites in a variety of medicinal compositions. Given that these molecules appear to be potential natural substances for treating human ailments, we get light on them as alternative therapeutic approaches using these compounds alone or in combination with other substances which will potentially lead to future (pre)-clinical investigations.
Collapse
Affiliation(s)
- Marina Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Farid N Kirollos
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Zhu Z, Ling X, Wang G, Xie J. G-CSFR-induced leukocyte transendothelial migration during the inflammatory response is regulated by the ICAM1-PKCa axis: based on multiomics integration analysis. Cell Biol Toxicol 2024; 40:90. [PMID: 39433604 PMCID: PMC11493794 DOI: 10.1007/s10565-024-09934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
As an indispensable inflammatory mediator during sepsis, granulocyte colony-stimulating factor (G-CSF) facilitates neutrophil production by activating G-CSFR. However, little is known about the role of intracellular downstream signalling pathways in the induction of inflammation. To explore the functions of molecules in regulating G-CSFR signalling, RNA sequencing and integrated proteomic and phosphoproteomic analyses were conducted to predict the differentially expressed molecules in modulating the inflammatory response after G-CSFR expression was either up- or downregulated, in addition to the confirmation of their biological function by diverse experimental methods. In the integrated bioinformatic analysis, 3190 differentially expressed genes (DEGs) and 1559 differentially expressed proteins (DEPs) were identified in multiple-group comparisons (p < 0.05, FC > ± 1.5) using enrichment analyses, as well as those classic pathways such as the TNF, NFkappaB, IL-17, and TLR signalling pathways. Among them, 201 proteins, especillay intercellular cell adhesion molecule-1 (ICAM1) and PKCa, were identified as potential molecules involved in inflammation according to the protein-protein interaction (PPI) analysis, and the leukocyte transendothelial migration (TEM) pathway was attributed to the intervention of G-CSFR. Compared with the control and TNF-a treatment, the G-CSFR (G-CSFROE)-overexpressing led to an obvious increase in the number of leukocytes with the TEM phenotype. Mechanically, the expression of ICAM1 and PKCa was significantly up- and downregulated by G-CSFROE, which directly led to increased TEM; moreover, PKCa expression was negatively regulated by ICAM1 expression, leading to aberrant leukocyte TEM. Altogether, the ICAM1‒PKCa axis was found a meaningful target in the leukocyte TEM induced by G-CSFR upregulation.
Collapse
Affiliation(s)
- Zhipeng Zhu
- Department of Anesthesiology, Run Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Qingchun East Road 3, Hangzhou, 310016, China.
- The Second Affiliated Hospital of Jiaxing University, Zhejiang, 314000, China.
| | - Xiaoyan Ling
- Department of Outpatient Nursing, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Gaojian Wang
- Department of Anesthesiology, Run Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Qingchun East Road 3, Hangzhou, 310016, China
| | - Junran Xie
- Department of Anesthesiology, Run Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Qingchun East Road 3, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Khairan K, Maulydia NB, Faddillah V, Tallei TE, Fauzi FM, Idroes R. Uncovering anti-inflammatory potential of Lantana camara Linn: Network pharmacology and in vitro studies. NARRA J 2024; 4:e894. [PMID: 39280287 PMCID: PMC11391997 DOI: 10.52225/narra.v4i2.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 09/18/2024]
Abstract
Lantana camara Linn contains a diverse array of metabolites that exhibit therapeutic potential. The aim of this study was to evaluate the potential of L. camara leaves, which were collected at the Ie-Seu'um geothermal area in Aceh, Indonesia, as an anti-inflammatory through network pharmacology and in vitro analysis. The ethanolic extract derived from L. camara underwent identification utilizing gas chromatography-mass spectrometry (GC-MS) to verify chemical constituents for drug-likeness properties. The evaluation of anti-inflammatory activity included network pharmacology and a series of in vitro investigations using two methods: protein inhibition and albumin denaturation assays. The findings revealed that the extract contained a domination of terpenoids and fatty acids class, which met the evaluation criteria of drug-likeness. Network pharmacology analysis identified the top five key proteins (peroxisome proliferator-activated receptor gamma, prostaglandin G/H synthase 2, epidermal growth factor receptor, hypoxia-inducible factor 1-alpha, and tyrosine protein kinase-Janus kinase 2) involved in inflammation-related protein-protein interactions. Gene ontology enrichment highlighted the predominance of inflammatory responses in biological processes (BP), cytoplasm in cellular components (CC), and oxidoreductase activity in molecular functions (MF). In vitro analysis showed that the extract inhibited protein activity and protein denaturation with inhibitory concentration (IC50) values of 202.27 and 223.85 ppm, respectively. Additionally, the extract had antioxidant activity with DPPH- and ABTS-scavenging IC50 values of 140 ppm and 163 ppm, respectively. Toxicological assessment by brine shrimp lethality assay (BSLA), yielding a lethal concentration (LC50) value of 574 ppm (essentially non-toxic) and its prediction via ProTox 3.0 that indicated non-active in hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. These results suggested that L. camara holds noteworthy effectiveness as a potential candidate for complementary medicine in the realm of inflammatory agents, warranting further investigation in clinical settings.
Collapse
Affiliation(s)
- Khairan Khairan
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Nur B Maulydia
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Vira Faddillah
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Trina E Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado, Indonesia
| | - Fazlin M Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, Bandar Puncak Alam, Malaysia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
5
|
Mohanty D, Padhee S, Priyadarshini A, Champati BB, Das PK, Jena S, Sahoo A, Chandra Panda P, Nayak S, Ray A. Elucidating the anti-cancer potential of Cinnamomum tamala essential oil against non-small cell lung cancer: A multifaceted approach involving GC-MS profiling, network pharmacology, and molecular dynamics simulations. Heliyon 2024; 10:e28026. [PMID: 38533033 PMCID: PMC10963383 DOI: 10.1016/j.heliyon.2024.e28026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., or Indian Bay Leaf, is a well-known traditional ayurvedic medicine used to treat various ailments. However, the molecular mechanism of action of Cinnamomum tamala essential oil (CTEO) against non-small cell lung cancer (NSCLC) remains elusive. The present study aims to decipher the molecular targets and mechanism of CTEO in treating NSCLC. GC-MS analysis detected 49 constituents; 44 successfully passed the drug-likeness screening and were identified as active compounds. A total of 3961 CTEO targets and 4588 anti-NSCLC-related targets were acquired. JUN, P53, IL6, MAPK3, HIF1A, and CASP3 were determined as hub genes, while cinnamaldehyde, ethyl cinnamate and acetophenone were identified as core compounds. Enrichment analysis revealed that targets were mainly involved in apoptosis, TNF, IL17, pathways in cancer and MAPK signalling pathways. mRNA expression, pathological stage, survival analysis, immune infiltrate correlation and genetic alteration analysis of the core hub genes were carried out. Kaplan-Meier overall survival (OS) curve revealed that HIF1A and CASP3 are linked to worse overall survival in Lung Adenocarcinoma (LUAD) cancer patients compared to normal patients. Ethyl cinnamate and cinnamaldehyde showed high binding energy with the MAPK3 and formed stable interactions with MAPK3 during the molecular dynamic simulations for 100 ns. The MM/PBSA analysis revealed that van der Waals (VdW) contributions predominantly account for a significant portion of the compound interactions within the binding pocket of MAPK3. Density functional theory analysis showed cinnamaldehyde as the most reactive and least stable compound. CTEO exhibited selective cytotoxicity by inhibiting the proliferation of A549 cells while sparing normal HEK293 cells. CTEO triggered apoptosis by arresting the cell cycle, increasing ROS accumulation, causing mitochondrial depolarisation, and elevating caspase-3, caspase-8 and caspase-9 levels in A549 cells. The above study provides insights into the pharmacological mechanisms of action of Cinnamomum tamala essential oil against non-small cell lung cancer treatment, suggesting its potential as an adjuvant therapy.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Arpita Priyadarshini
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Bibhuti Bhusan Champati
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Prabhat Kumar Das
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Asit Ray
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, 751003, India
| |
Collapse
|
6
|
Mohanty D, Padhee S, Sahoo C, Jena S, Sahoo A, Chandra Panda P, Nayak S, Ray A. Integrating network pharmacology and experimental verification to decipher the multitarget pharmacological mechanism of Cinnamomum zeylanicum essential oil in treating inflammation. Heliyon 2024; 10:e24120. [PMID: 38298712 PMCID: PMC10828654 DOI: 10.1016/j.heliyon.2024.e24120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Inflammatory diseases contribute to more than 50 % of global deaths. Research suggests that network pharmacology can reveal the biological mechanisms underlying inflammatory diseases and drug effects at the molecular level. The aim of the study was to clarify the biological mechanism of Cinnamomum zeylanicum essential oil (CZEO) and predict molecular targets of CZEO against inflammation by employing network pharmacology and in vitro assays. First, the genes related to inflammation were identified from the Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The CZEO targets were obtained from the SwissTargetPrediction and Similarity Ensemble Approach (SEA) database. A total of 1057 CZEO and 526 anti-inflammation targets were obtained. The core hub target of CZEO anti-inflammatory was obtained using the protein-protein interaction network. KEGG pathway analysis suggested CZEO to exert anti-inflammatory effect mainly through Tumor necrosis factor, Toll-like receptor and IL-17 signalling pathway. Molecular docking of active ingredients-core targets interactions was modelled using Pyrx software. Docking and simulation studies revealed benzyl benzoate to exhibit good binding affinity towards IL8 protein. MTT assay revealed CZEO to have non-cytotoxic effect on RAW 264.7 cells. CZEO also inhibited the production of NO, PGE2, IL-6, IL-1β and TNF-α and promoted the activity of endogenous antioxidant enzymes in LPS-stimulated RAW 264.7 cells. Additionally, CZEO inhibited intracellular ROS generation, NF-kB nuclear translocation and modulated the expression of downstream genes involved in Toll-like receptor signalling pathway. The results deciphered the mechanism of CZEO in treating inflammation and provided a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Chiranjibi Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Asit Ray
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| |
Collapse
|
7
|
Mohanty D, Padhee S, Jena S, Sahoo A, Panda PC, Nayak S, Ray A. Exploration of Pharmacological Mechanism of Cinnamomum tamala Essential Oil in Treating Inflammation based on Network Pharmacology, Molecular Modelling, and Experimental Validation. Curr Pharm Des 2024; 30:2959-2977. [PMID: 39171467 DOI: 10.2174/0113816128342075240816104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., also known as Indian bay leaf, holds a distinctive position in complementary and alternative medicinal systems due to its anti-inflammatory properties. However, the active constituents and key molecular targets by which C. tamala essential oil (CTEO) exerts its anti-inflammatory action remain unclear. OBJECTIVE The present study used network pharmacology and experimental validation to investigate the mechanism of CTEO in the treatment of inflammation. METHODS GC-MS analysis was used to identify the constituents of CTEO. The key constituents and core targets of CTEO against inflammation were obtained by network pharmacology. The binding mechanism between the active compounds and inflammatory genes was ascertained by molecular docking and molecular dynamics simulation analysis. The pharmacological mechanism predicted by network pharmacology was verified in lipopolysaccharide-stimulated murine macrophage (RAW 264.7) cell lines. RESULTS Forty-nine constituents were identified by GC-MS analysis, with 44 constituents being drug-like candidates. A total of 549 compounds and 213 inflammation-related genes were obtained, revealing 68 overlapping genes between them. Compound target network analysis revealed cinnamaldehyde as the core bioactive compound with the highest degree score. PPI network analysis demonstrated Il-1β, TNF-α, IL8, IL6 and TLR4 as key hub anti-inflammatory targets. KEGG enrichment analysis revealed a Toll-like receptor signalling pathway as the principally regulated pathway associated with inflammation. A molecular docking study showed that cinnamaldehyde strongly interacted with the Il-1β, TNF-α and TLR-4 proteins. Molecular dynamics simulations and MMPBSA analysis revealed that these complexes are stable without much deviation and have better free energy values. In cellular experiments, CTEO showed no cytotoxic effects on RAW 264.7 murine macrophages. The cells treated with LPS exhibited significant reductions in NO, PGE2, IL-6, TNF-α, and IL-1β levels following treatment with CTEO. Additionally, CTEO treatment reduced the ROS levels and increased the antioxidant enzymes such as SOD, GSH, GPx and CAT. Immunofluorescence analysis revealed that CTEO inhibited LPS-stimulated NF-κB nuclear translocation. The mRNA expression of TLR4, MyD88 and TRAF6 in the CTEO group decreased significantly compared to the LPS-treated group. CONCLUSION The current findings suggest that CTEO attenuates inflammation by regulating TLR4/MyD88/NF- κB signalling pathway.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| | - Asit Ray
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| |
Collapse
|
8
|
Surya Prakash V, Radhakrishnan N, Vasantha-Srinivasan P, Veeramani C, El Newehy AS, Alsaif MA, Al-Numair KS. In silico analysis of selected nutrition rich fruit of Bunch berry ( Lantana camara) constituents as human acetylcholinesterase (hAchE), carbonic anhydrase II (hCA-II) and carboxylesterase 1 (hCES-1) inhibitory agents. Saudi J Biol Sci 2023; 30:103847. [PMID: 37961045 PMCID: PMC10638019 DOI: 10.1016/j.sjbs.2023.103847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Background Bunch berry (Lantana camara) is primarily composed of flavonoids and vitamin C; therefore, it has been shown to possess various medical characteristics, including the ability to relieve fever, inflammation, and urinary tract infections. Objective In this study, we intended to assess twenty chosen constituents of Bunch berry as potent inhibitory agents of human acetylcholinesterase (hAchE), carbonic anhydrase II (hCA-II) and carboxylesterase 1 (hCES-1) employing in silico techniques. Methods The twenty chosen Bunch berry components were examined about docking behaviour of hAchE, hCA-II and hCES-I by using the Swissdock method. Apart from to docking, Molecular physico-chemical, drug-likeness, ADME (ingesting, dispersing, metabolising, and excreting), and toxicity assessments were also performed utilising the Molinspiration, Swiss ADME, pkCSM, and STITCH web sites, correspondingly. Results Eight ligands (40 %) have exhibited strict adherence to Lipinski's rule of five (Ro5), according to molecular physico-chemical study. Drug-likeness property analysis has shown that five ligands (25 %) of Bunch berry predicted to exhibit moderate bioactivity score against all the descriptors. ADME analysis has shown that five ligands (25 %) of Bunch berry are predicted to possess high gastrointestinal absorption property Toxicity analysis has shown that six ligands (30 %) of Bunch berry are predicted to have hERG II (Human ether-a-go-go-related gene) inhibition activity. According to the docking analysis, lantic acid has the lowest atomic binding energy for all three target enzymes, hAchE (-6.23 kcal/mol), hCA-II (-4.46 kcal/mol), and hCES-I (-5.99 kcal/mol), respectively. Conclusions Thus the current find provides an advanced understanding the twenty selected ligands of Bunch berry as potent inhibitory agents of human acetylcholinesterase (hAchE), carbonic anhydrase II (hCA-II) and carboxylesterase 1 (hCES-1).
Collapse
Affiliation(s)
- V. Surya Prakash
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602 105, India
| | - N. Radhakrishnan
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602 105, India
| | - P. Vasantha-Srinivasan
- Department of Bio-Informatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 602105, India
| | - Chinnadurai Veeramani
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Ahmed S. El Newehy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed A. Alsaif
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Khalid S. Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
9
|
Efeoglu C, Taskin S, Selcuk O, Celik B, Tumkaya E, Ece A, Sari H, Seferoglu Z, Ayaz F, Nural Y. Synthesis, anti-inflammatory activity, inverse molecular docking, and acid dissociation constants of new naphthoquinone-thiazole hybrids. Bioorg Med Chem 2023; 95:117510. [PMID: 37926047 DOI: 10.1016/j.bmc.2023.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Chronic Inflammation is associated with various types of diseases that involves pro-inflammatory cytokines like IL-6 and TNF-α. High costs and serious side effects of available anti-inflammatory/immunomodulatory drugs led us to design new compounds with promising anti-inflammatory activities. Many drugs and biologically important compounds involve naphthoquinone and thiazole moieties in their core structures. Thereby, here we report the synthesis, characterization and anti-inflammatory activities of new naphthoquinone thiazole hybrids by reaction of naphthoquinone acyl thioureas with various α-bromoketone derivatives. The position of NO2 group in one of the phenyl rings of naphthoquinone thiazole hybrids was changed while different substituents were introduced at the para position of the second phenyl ring. All compounds were tested for potential immunomodulatory effect. No inflammatory cytokines were observed in the absence of LPS stimulant. On the other hand, they had promising anti-inflammatory immunomodulatory activities by being able to decrease the production of the pro-inflammatory cytokines (TNF-α and IL-6) in the LPS-stimulated cells. In an effort to find the possible mechanism of action, several enzymes involved in signalling pathways that play critical roles in inflammatory responses were screened in silico. Subsequent to inverse molecular docking approach, PI3K was predicted be the potential target. The docked complexes of the most potent compounds 5g and 5i were subjected to molecular dynamics simulation to assess the binding stability of the igands with the putative target. Acid dissociation constants (pKa) of the products were also determined potentiometrically.
Collapse
Affiliation(s)
- Cagla Efeoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Sena Taskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye
| | - Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Begum Celik
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Ece Tumkaya
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye.
| | - Hayati Sari
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpasa University, 60250 Tokat, Türkiye
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06560 Ankara, Türkiye
| | - Furkan Ayaz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, İstanbul 34010, Türkiye.
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye.
| |
Collapse
|
10
|
Li L, Yang L, Yang L, He C, He Y, Chen L, Dong Q, Zhang H, Chen S, Li P. Network pharmacology: a bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin Med 2023; 18:146. [PMID: 37941061 PMCID: PMC10631104 DOI: 10.1186/s13020-023-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Network pharmacology can ascertain the therapeutic mechanism of drugs for treating diseases at the level of biological targets and pathways. The effective mechanism study of traditional Chinese medicine (TCM) characterized by multi-component, multi-targeted, and integrative efficacy, perfectly corresponds to the application of network pharmacology. Currently, network pharmacology has been widely utilized to clarify the mechanism of the physiological activity of TCM. In this review, we comprehensively summarize the application of network pharmacology in TCM to reveal its potential of verifying the phenotype and underlying causes of diseases, realizing the personalized and accurate application of TCM. We searched the literature using "TCM network pharmacology" and "network pharmacology" as keywords from Web of Science, PubMed, Google Scholar, as well as Chinese National Knowledge Infrastructure in the last decade. The origins, development, and application of network pharmacology are closely correlated with the study of TCM which has been applied in China for thousands of years. Network pharmacology and TCM have the same core idea and promote each other. A well-defined research strategy for network pharmacology has been utilized in several aspects of TCM research, including the elucidation of the biological basis of diseases and syndromes, the prediction of TCM targets, the screening of TCM active compounds, and the decipherment of mechanisms of TCM in treating diseases. However, several factors limit its application, such as the selection of databases and algorithms, the unstable quality of the research results, and the lack of standardization. This review aims to provide references and ideas for the research of TCM and to encourage the personalized and precise use of Chinese medicine.
Collapse
Affiliation(s)
- Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Liuqing Yang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Huaiying Zhang
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan, China
| | - Shiyun Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
11
|
Xu L, Zuo SM, Liu M, Wang T, Li Z, Yun YH, Zhang W. Integrated Analysis of Metabolomics Combined with Network Pharmacology and Molecular Docking Reveals the Effects of Processing on Metabolites of Dendrobium officinale. Metabolites 2023; 13:886. [PMID: 37623830 PMCID: PMC10456568 DOI: 10.3390/metabo13080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Dendrobium officinale (D. officinale) is a precious medicinal species of Dendrobium Orchidaceae, and the product obtained by hot processing is called "Fengdou". At present, the research on the processing quality of D. officinale mainly focuses on the chemical composition indicators such as polysaccharides and flavonoids content. However, the changes in metabolites during D. officinale processing are still unclear. In this study, the process was divided into two stages and three important conditions including fresh stems, semiproducts and "Fengdou" products. To investigate the effect of processing on metabolites of D. officinale in different processing stages, an approach of combining metabolomics with network pharmacology and molecular docking was employed. Through UPLC-MS/MS analysis, a total of 628 metabolites were detected, and 109 of them were identified as differential metabolites (VIP ≥ 1, |log2 (FC)| ≥ 1). Next, the differential metabolites were analyzed using the network pharmacology method, resulting in the selection of 29 differential metabolites as they have a potential pharmacological activity. Combining seven diseases, 14 key metabolites and nine important targets were screened by constructing a metabolite-target-disease network. The results showed that seven metabolites with potential anticoagulant, hypoglycemic and tumor-inhibiting activities increased in relative abundance in the "Fengdou" product. Molecular docking results indicated that seven metabolites may act on five important targets. In general, processing can increase the content of some active metabolites of D. officinale and improve its medicinal quality to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Huan Yun
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (L.X.)
| | | |
Collapse
|
12
|
Hossain A, Rahman ME, Rahman MS, Nasirujjaman K, Matin MN, Faruqe MO, Rabbee MF. Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (M pro) using molecular docking and deep learning methods. Comput Biol Med 2023; 157:106785. [PMID: 36931201 PMCID: PMC10008098 DOI: 10.1016/j.compbiomed.2023.106785] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Highly transmissive and rapidly evolving Coronavirus disease-2019 (COVID-19), a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), triggered a global pandemic, which is one of the most researched viruses in the academia. Effective drugs to treat people with COVID-19 have yet to be developed to reduce mortality and transmission. Studies on the SARS-CoV-2 virus identified that its main protease (Mpro) might be a potential therapeutic target for drug development, as this enzyme plays a key role in viral replication. In search of potential inhibitors of Mpro, we developed a phytochemical library consisting of 2431 phytochemicals from 104 Korean medicinal plants that exhibited medicinal and antioxidant properties. The library was screened by molecular docking, followed by revalidation by re-screening with a deep learning method. Recurrent Neural Networks (RNN) computing system was used to develop an inhibitory predictive model using SARS coronavirus Mpro dataset. It was deployed to screen the top 12 compounds based on their docked binding affinity that ranged from -8.0 to -8.9 kcal/mol. The top two lead compounds, Catechin gallate and Quercetin 3-O-malonylglucoside, were selected depending on inhibitory potency against Mpro. Interactions with the target protein active sites, including His41, Met49, Cys145, Met165, and Thr190 were also examined. Molecular dynamics simulation was performed to analyze root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (RG), solvent accessible surface area (SASA), and number of hydrogen bonds. Results confirmed the inflexible nature of the docked complexes. Absorption, distribution, metabolism, excretion, and toxicity (ADMET), as well as bioactivity prediction confirmed the pharmaceutical activities of the lead compound. Findings of this research might help scientists to optimize compatible drugs for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Siddiqur Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khondokar Nasirujjaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Nurul Matin
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|