1
|
Yang XX, Luo H, Zhang JJ, Ge H, Ge L. Clinical translation of ultra-high dose rate flash radiotherapy: Opportunities, challenges, and prospects. World J Radiol 2025; 17:105722. [PMID: 40309475 PMCID: PMC12038406 DOI: 10.4329/wjr.v17.i4.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Ultra-high dose rate flash radiotherapy (FLASH-RT) has attracted wide attention in the field of radiotherapy in recent years. For FLASH-RT, radiation is delivered at a very high dose rate [usually thousands of times compared with conventional radiotherapy (CONV-RT)] in an extremely short time. This novel irradiation technique shows a protective effect on normal tissues, also known as the flash effect. At the same time, FLASH-RT is comparable to CONV-RT in terms of tumor-killing efficacy. As basic research dedicates to uncover the mechanisms by which FLASH-RT reduces radiation-induced normal tissue damage, clinical trials of FLASH-RT have been gradually conducted worldwide. This article systematically reviews the evidence of the feasibility and safety of FLASH-RT in clinical practice and offers insights into the future translation of this technology in clinic.
Collapse
Affiliation(s)
- Xiang-Xiang Yang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui Luo
- Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou 450003, Henan Province, China
| | - Jia-Jun Zhang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Heng Ge
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liang Ge
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
2
|
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Jayatilake MM, Tan Y, Ponnaiya B, Wu X, Amundson SA, Brenner DJ, Fornace AJ. Impact of Partial Body Shielding from Very High Dose Rates on Untargeted Metabolomics in Biodosimetry. ACS OMEGA 2024; 9:35182-35196. [PMID: 39157112 PMCID: PMC11325421 DOI: 10.1021/acsomega.4c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
A realistic exposure to ionizing radiation (IR) from an improvised nuclear device will likely include individuals who are partially shielded from the initial blast delivered at a very high dose rate (VHDR). As different tissues have varying levels of radiosensitivity, e.g., hematopoietic vs gastrointestinal tissues, the effects of shielding on radiation biomarkers need to be addressed. Here, we explore how biofluid (urine and serum) metabolite signatures from male and female C57BL/6 mice exposed to VHDR (5-10 Gy/s) total body irradiation (TBI, 0, 4, and 8 Gy) compare to individuals exposed to partial body irradiation (PBI) (lower body irradiated [LBI] or upper body irradiated [UBI] at an 8 Gy dose) using a data-independent acquisition untargeted metabolomics approach. Although sex differences were observed in the spatial groupings of urine signatures from TBI and PBI mice, a metabolite signature (N6,N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, taurine, and creatine) previously developed from variable dose rate experiments was able to identify individuals with high sensitivity and specificity, irrespective of radiation shielding. A panel of serum metabolites composed from previous untargeted studies on nonhuman primates had excellent performance for separating irradiated cohorts; however, a multiomic approach to complement the metabolome could increase dose estimation confidence intervals. Overall, these results support the inclusion of small-molecule markers in biodosimetry assays without substantial interference from the upper or lower body shielding.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| | - Guy Garty
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sunil Bansal
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Meth M. Jayatilake
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Yuewen Tan
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
| | - Brian Ponnaiya
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Xuefeng Wu
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sally A. Amundson
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - David J. Brenner
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Albert J. Fornace
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| |
Collapse
|
3
|
Padilla O, Minns HE, Wei HJ, Fan W, Webster-Carrion A, Tazhibi M, McQuillan NM, Zhang X, Gallitto M, Yeh R, Zhang Z, Hei TK, Szalontay L, Pavisic J, Tan Y, Deoli N, Garty G, Garvin JH, Canoll PD, Vanpouille-Box C, Menon V, Olah M, Rabadan R, Wu CC, Gartrell RD. Immune Response following FLASH and Conventional Radiation in Diffuse Midline Glioma. Int J Radiat Oncol Biol Phys 2024; 119:1248-1260. [PMID: 38364947 PMCID: PMC11209798 DOI: 10.1016/j.ijrobp.2024.01.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/β receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.
Collapse
Affiliation(s)
- Oscar Padilla
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanna E Minns
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Oregon Health and Science University School of Medicine, Portland, Oregon
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Weijia Fan
- Mailman School of Public Health, Columbia University, New York, New York
| | | | - Masih Tazhibi
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Nicholas M McQuillan
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Xu Zhang
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York; Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Rebecca Yeh
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Zhiguo Zhang
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York; Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Luca Szalontay
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jovana Pavisic
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Yuewen Tan
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - Guy Garty
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York; Center for Radiological Research, Columbia University Irving Medical Center, New York, New York; Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, New York
| | - James H Garvin
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Peter D Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | | | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, New York; Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - Marta Olah
- Department of Neurology, Columbia University Irving Medical Center, New York, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York; Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, New York
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
4
|
McGarrigle JM, Long KR, Prezado Y. The FLASH effect-an evaluation of preclinical studies of ultra-high dose rate radiotherapy. Front Oncol 2024; 14:1340190. [PMID: 38711846 PMCID: PMC11071325 DOI: 10.3389/fonc.2024.1340190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a novel radiotherapy approach based on the use of ultra-high dose radiation to treat malignant cells. Although tumours can be reduced or eradicated using radiotherapy, toxicities induced by radiation can compromise healthy tissues. The FLASH effect is the observation that treatment delivered at an ultra-high dose rate is able to reduce adverse toxicities present at conventional dose rates. While this novel technique may provide a turning point for clinical practice, the exact mechanisms underlying the causes or influences of the FLASH effect are not fully understood. The study presented here uses data collected from 41 experimental investigations (published before March 2024) of the FLASH effect. Searchable databases were constructed to contain the outcomes of the various experiments in addition to values of beam parameters that may have a bearing on the FLASH effect. An in-depth review of the impact of the key beam parameters on the results of the experiments was carried out. Correlations between parameter values and experimental outcomes were studied. Pulse Dose Rate had positive correlations with almost all end points, suggesting viability of FLASH-RT as a new modality of radiotherapy. The collective results of this systematic review study suggest that beam parameter qualities from both FLASH and conventional radiotherapy can be valuable for tissue sparing and effective tumour treatment.
Collapse
Affiliation(s)
| | - Kenneth Richard Long
- Department of Physics, Imperial College London, London, United Kingdom
- Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Yolanda Prezado
- Institut Curie, Universite Paris-Saclay, Centre national de la recherche scientifique (CNRS) UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Universite Paris-Saclay, Centre national de la recherche scientifique (CNRS) UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
| |
Collapse
|
5
|
Harken AD, Deoli NT, Perez Campos C, Ponnaiya B, Garty G, Lee GS, Casper MJ, Dhingra S, Li W, Johnson GW, Amundson SA, Grabham PW, Hillman EMC, Brenner DJ. Combined ion beam irradiation platform and 3D fluorescence microscope for cellular cancer research. BIOMEDICAL OPTICS EXPRESS 2024; 15:2561-2577. [PMID: 38633084 PMCID: PMC11019671 DOI: 10.1364/boe.522969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
To improve particle radiotherapy, we need a better understanding of the biology of radiation effects, particularly in heavy ion radiation therapy, where global responses are observed despite energy deposition in only a subset of cells. Here, we integrated a high-speed swept confocally-aligned planar excitation (SCAPE) microscope into a focused ion beam irradiation platform to allow real-time 3D structural and functional imaging of living biological samples during and after irradiation. We demonstrate dynamic imaging of the acute effects of irradiation on 3D cultures of U87 human glioblastoma cells, revealing characteristic changes in cellular movement and intracellular calcium signaling following ionizing irradiation.
Collapse
Affiliation(s)
- Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Naresh T Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Citlali Perez Campos
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Grace S Lee
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Malte J Casper
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Shikhar Dhingra
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenze Li
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - Gary W Johnson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Peter W Grabham
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Departments of Biomedical Engineering and Radiology, Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Sciences, Columbia University, New York, NY, 10027, USA
| | - David J Brenner
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, 136 S. Broadway, P.O. Box 21, Irvington, New York 10533, USA
- Center for Radiological Research, Columbia University Irving Medical Center, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
6
|
Broustas CG, Mukherjee S, Shuryak I, Taraboletti A, Angdisen J, Ake P, Fornace AJ, Amundson SA. Impact of GADD45A on Radiation Biodosimetry Using Mouse Peripheral Blood. Radiat Res 2023; 200:296-306. [PMID: 37421415 PMCID: PMC10559452 DOI: 10.1667/rade-23-00052.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
High-dose-radiation exposure in a short period of time leads to radiation syndromes characterized by severe acute and delayed organ-specific injury accompanied by elevated organismal morbidity and mortality. Radiation biodosimetry based on gene expression analysis of peripheral blood is a valuable tool to detect exposure to radiation after a radiological/nuclear incident and obtain useful biological information that could predict tissue and organismal injury. However, confounding factors, including chronic inflammation, can potentially obscure the predictive power of the method. GADD45A (Growth arrest and DNA damage-inducible gene a) plays important roles in cell growth control, differentiation, DNA repair, and apoptosis. GADD45A-deficient mice develop an autoimmune disease, similar to human systemic lupus erythematosus, characterized by severe hematological disorders, kidney disease, and premature death. The goal of this study was to elucidate how pre-existing inflammation in mice, induced by GADD45A ablation, can affect radiation biodosimetry. We exposed wild-type and GADD45A knockout male C57BL/6J mice to 7 Gy of X rays and 24 h later RNA was isolated from whole blood and subjected to whole genome microarray and gene ontology analyses. Dose reconstruction analysis using a gene signature trained on gene expression data from irradiated wild-type male mice showed accurate reconstruction of either a 0 Gy or 7 Gy dose with root mean square error of ± 1.05 Gy (R^2 = 1.00) in GADD45A knockout mice. Gene ontology analysis revealed that irradiation of both wild-type and GADD45A-null mice led to a significant overrepresentation of pathways associated with morbidity and mortality, as well as organismal cell death. However, based on their z-score, these pathways were predicted to be more significantly overrepresented in GADD45A-null mice, implying that GADD45A deletion may exacerbate the deleterious effects of radiation on blood cells. Numerous immune cell functions and quantities were predicted to be underrepresented in both genotypes; however, differentially expressed genes from irradiated GADD45A knockout mice predicted an increased deterioration in the numbers of T lymphocytes, as well as myeloid cells, compared with wild-type mice. Furthermore, an overrepresentation of genes associated with radiation-induced hematological malignancies was associated with GADD45A knockout mice, whereas hematopoietic and progenitor cell functions were predicted to be downregulated in irradiated GADD45A knockout mice. In conclusion, despite the significant differences in gene expression between wild-type and GADD45A knockout mice, it is still feasible to identify a panel of genes that could accurately distinguish between irradiated and control mice, irrespective of pre-existing inflammation status.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanjay Mukherjee
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexandra Taraboletti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pelagie Ake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Chaklai A, Canaday P, O’Niel A, Cucinotta FA, Sloop A, Gladstone D, Pogue B, Zhang R, Sunnerberg J, Kheirollah A, Thomas CR, Hoopes PJ, Raber J. Effects of UHDR and Conventional Irradiation on Behavioral and Cognitive Performance and the Percentage of Ly6G+ CD45+ Cells in the Hippocampus. Int J Mol Sci 2023; 24:12497. [PMID: 37569869 PMCID: PMC10419899 DOI: 10.3390/ijms241512497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We assessed the effects of conventional and ultra-high dose rate (UHDR) electron irradiation on behavioral and cognitive performance one month following exposure and assessed whether these effects were associated with alterations in the number of immune cells in the hippocampus using flow cytometry. Two-month-old female and male C57BL/6J mice received whole-brain conventional or UHDR irradiation. UHDR mice were irradiated with 9 MeV electrons, delivered by the Linac-based/modified beam control. The mice were irradiated or sham-irradiated at Dartmouth, the following week shipped to OHSU, and behaviorally and cognitively tested between 27 and 41 days after exposure. Conventional- and UHDR-irradiated mice showed impaired novel object recognition. During fear learning, conventional- and UHDR-irradiated mice moved less during the inter-stimulus interval (ISI) and UHDR-irradiated mice also moved less during the baseline period (prior to the first tone). In irradiated mice, reduced activity levels were also seen in the home cage: conventional- and UHDR-irradiated mice moved less during the light period and UHDR-irradiated mice moved less during the dark period. Following behavioral and cognitive testing, infiltrating immune cells in the hippocampus were analyzed by flow cytometry. The percentage of Ly6G+ CD45+ cells in the hippocampus was lower in conventional- and UHDR-irradiated than sham-irradiated mice, suggesting that neutrophils might be particularly sensitive to radiation. The percentage of Ly6G+ CD45+ cells in the hippocampus was positively correlated with the time spent exploring the novel object in the object recognition test. Under the experimental conditions used, cognitive injury was comparable in conventional and UHDR mice. However, the percentage of CD45+ CD11b+ Ly6+ and CD45+ CD11b+ Ly6G- cells in the hippocampus cells in the hippocampus was altered in conventional- but not UHDR-irradiated mice and the reduced percentage of Ly6G+ CD45+ cells in the hippocampus might mediate some of the detrimental radiation-induced cognitive effects.
Collapse
Affiliation(s)
- Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Pamela Canaday
- Knight Flow Cytometry Core OHSU, Portland, OR 97239, USA;
| | - Abigail O’Niel
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Austin Sloop
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - David Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Brian Pogue
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA;
| | - Rongxiao Zhang
- Department of Radiation Medicine, New York Medical College, Westchester Medical Center, Valhalla, NY 10595, USA;
| | - Jacob Sunnerberg
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Alireza Kheirollah
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Charles R. Thomas
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - P. Jack Hoopes
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Pannkuk EL, Laiakis EC, Garty G, Ponnaiya B, Wu X, Shuryak I, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Variable Dose Rates in Realistic Radiation Exposures: Effects on Small Molecule Markers of Ionizing Radiation in the Murine Model. Radiat Res 2023; 200:1-12. [PMID: 37212727 PMCID: PMC10410530 DOI: 10.1667/rade-22-00211.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Novel biodosimetry assays for use in preparedness and response to potential malicious attacks or nuclear accidents would ideally provide accurate dose reconstruction independent of the idiosyncrasies of a complex exposure to ionizing radiation. Complex exposures will consist of dose rates spanning the low dose rates (LDR) to very high-dose rates (VHDR) that need to be tested for assay validation. Here, we investigate how a range of relevant dose rates affect metabolomic dose reconstruction at potentially lethal radiation exposures (8 Gy in mice) from an initial blast or subsequent fallout exposures compared to zero or sublethal exposures (0 or 3 Gy in mice) in the first 2 days, which corresponds to an integral time individuals will reach medical facilities after a radiological emergency. Biofluids (urine and serum) were collected from both male and female 9-10-week-old C57BL/6 mice at 1 and 2 days postirradiation (total doses of 0, 3 or 8 Gy) after a VHDR of 7 Gy/s. Additionally, samples were collected after a 2-day exposure consisting of a declining dose rate (1 to 0.004 Gy/min) recapitulating the 7:10 rule-of-thumb time dependency of nuclear fallout. Overall similar perturbations were observed in both urine and serum metabolite concentrations irrespective of sex or dose rate, with the exception of xanthurenic acid in urine (female specific) and taurine in serum (VHDR specific). In urine, we developed identical multiplex metabolite panels (N6, N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, and taurine) that could identify individuals receiving potentially lethal levels of radiation from the zero or sublethal cohorts with excellent sensitivity and specificity, with creatine increasing model performance at day 1. In serum, individuals receiving a 3 or 8 Gy exposure could be identified from their pre-irradiation samples with excellent sensitivity and specificity, however, due to a lower dose response the 3 vs. 8 Gy groups could not be distinguished from each other. Together with previous results, these data indicate that dose-rate-independent small molecule fingerprints have potential in novel biodosimetry assays.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Center for Metabolomic Studies, Georgetown University, Washington, DC
| |
Collapse
|