1
|
Shilky, Baishya R, Saikia P. Identification of urban street trees for green belt development for optimizing pollution mitigation in Delhi, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54962-54978. [PMID: 39223410 DOI: 10.1007/s11356-024-34802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The current study evaluated the effects of air pollution on selected street trees in the National Capital Territory during the pre- and post-monsoon seasons to identify the optimally suitable tree for green belt development in Delhi. The identification was performed by measuring the air pollution tolerance index (APTI), anticipated performance index (API), dust-capturing capacity (DCC) and proline content on the trees. The APTI of street trees of Delhi varied significantly among different tree species (F11,88.91 = 47.18, p < 0.05), experimental sites (F3,12.52 = 6.65, p < 0.001) and between seasons (F1,31.12 = 16.51, p < 0.001), emphasizing the relationships between trees and other types of variables such as the climate and level of pollution, among other factors. This variability emphasizes the need to choose trees to use for urban greening in the improvement of air quality in different environments within cities. Ascorbic acid (AA) concentration and relative water content (RWC) had a strong influence on APTI with an extremely significant moderate positive correlation between AA concentration and APTI (r = 0.65, p < 0.001) along with RWC and APTI (r = 0.52, p < 0.001), indicating that higher levels of AA concentration and RWC are linked to increased air pollution tolerance. The PCA bi-plot indicates AA has poor positive loading coefficients with PC1 explaining 29.49% of the total variance in the dataset. The highest APTI was recorded in Azadirachta indica (22.01), Leucaena leucocephala (20.65), Morus alba (20.62), Ficus religiosa (20.61) and Ficus benghalensis (19.61), irrespective of sites and seasons. Similarly, based on API grading, F. religiosa and F. benghalensis were identified as excellent API grade 6 (81-90%), A. indica and Alstonia scholaris as very good API grade 5 (71-80%), M. alba, Pongamia pinnata and Monoon longifolium as good API grade 4 (61-70%) and Plumeria alba as moderate API grade 3 (51-60%) in different streets of Delhi. As these plants are indigenous to the region and hold significant socio-economic and aesthetic significance in Indian societies, they are advisable for avenue plantations as part of various government initiatives to support environmental sustainability.
Collapse
Affiliation(s)
- Shilky
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Ratul Baishya
- Department of Botany, University of Delhi, New Delhi, India
| | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India.
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Roy A, Mandal M, Das S, Popek R, Rakwal R, Agrawal GK, Awasthi A, Sarkar A. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169763. [PMID: 38181950 DOI: 10.1016/j.scitotenv.2023.169763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Particulate matter (PM) pollution is one of the pressing environmental concerns confronting human civilization in the face of the Anthropocene era. Plants are continuously exposed to an accelerating PM, threatening their growth and productivity. Although plants and plant-based infrastructures can potentially reduce ambient air pollutants, PM still affects them morphologically, anatomically, and physiologically. This review comprehensively summarizes an up-to-date review of plant-PM interaction among different functional plant groups, PM deposition and penetration through aboveground and belowground plant parts, and plants' cellular strategies. Upon exposure, PM represses lipid desaturases, eventually leading to modification of cell wall and membrane and altering cell fluidity; consequently, plants can sense the pollutants and, thus, adapt different cellular strategies. The PM also causes a reduction in the photosynthetically active radiation. The study demonstrated that plants reduce stomatal density to avoid PM uptake and increase stomatal index to compensate for decreased gaseous exchange efficiency and transpiration rates. Furthermore, genes and gene sets associated with photosynthesis, glycolysis, gluconeogenesis, and the TCA cycle were dramatically lowered by PM stress. Several transcription factors, including MYB, C2H2, C3H, G2-like, and WRKY were induced, and metabolites such as proline and soluble sugar were accumulated to increase resistance against stressors. In addition, enzymatic and non-enzymatic antioxidants were also accumulated to scavenge the PM-induced reactive oxygen species (ROS). Taken together, this review provides an insight into plants' underlying cellular mechanisms and gene regulatory networks in response to the PM to determine strategies to preserve their structural and functional blend in the face of particulate pollution. The study concludes by recommending that future research should precisely focus on plants' response to short- and long-term PM exposure.
Collapse
Affiliation(s)
- Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India
| | - Robert Popek
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; GRADE Academy (Pvt.) Ltd., Birgunj, Nepal
| | | | - Amit Awasthi
- Department of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732 103, West Bengal, India.
| |
Collapse
|
3
|
Sawarkar R, Shakeel A, Kumar T, Ansari SA, Agashe A, Singh L. Evaluation of plant species for air pollution tolerance and phytoremediation potential in proximity to a coal thermal power station: implications for smart green cities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7303-7322. [PMID: 37368173 DOI: 10.1007/s10653-023-01667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
In metropolitan areas, air pollution poses a significant threat, and it is crucial to carefully select plant species that can tolerate such conditions. This requires a scientific approach based on systematic evaluation before recommending them to executive bodies. This study aimed to determine the air pollution tolerance index (APTI), dust retention capacity, and phytoremediation ability of 10 plant species growing in and around a lignite-based coal thermal power station. The results showed that Ficus benghalensis L. had the highest APTI, followed by Mimusops elengi L., Ficus religiosa L., Azadirachta indica A. Juss., and Annona reticulata L. F. benghalensis also showed the highest pH of leaf extract, relative water content, total chlorophyll, and ascorbic acid content, as well as the highest dust capturing capacity. Among the ten plant species, F. benghalensis, M. elengi, F. religiosa, A. indica and F. racemosa were identified as a tolerant group that can be used for particulate matter suppression and heavy metal stabilization in and around thermal power plants. These findings can inform the selection of plants for effective green infrastructure in smart green cities, promoting the health and well-being of urban populations. This research is relevant to urban planners, policymakers, and environmentalists interested in sustainable urban development and air pollution mitigation.
Collapse
Affiliation(s)
- Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Tinku Kumar
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Ashish Agashe
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-NEERI, Nagpur, 440020, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Singh AK, Kumar M, Bauddh K, Singh A, Singh P, Madhav S, Shukla SK. Environmental impacts of air pollution and its abatement by plant species: A comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79587-79616. [PMID: 37322401 DOI: 10.1007/s11356-023-28164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Air pollution is one of the major global environmental issues urgently needed attention for its control through sustainable approaches. The release of air pollutants from various anthropogenic and natural processes imposes serious threats to the environment and human health. The green belt development using air pollution-tolerant plant species has become popular approach for air pollution remediation. Plants' biochemical and physiological attributes, especially relative water content, pH, ascorbic acid, and total chlorophyll content, are taken into account for assessing air pollution tolerance index (APTI). In contrast, anticipated performance index (API) is assessed based on socio-economic characteristics including "canopy structure, type, habit, laminar structure, economic value and APTI score" of plant species. Based on previous work, plants with high dust-capturing capacity are identified in Ficus benghalensis L. (0.95 to 7.58 mg/cm2), and highest overall PM accumulation capacity was observed in Ulmus pumila L. (PM10 = 72 µg/cm2 and PM2.5 = 70 µg/cm2) in the study from different regions. According to APTI, the plant species such as M. indica (11 to 29), Alstonia scholaris (L.) R. Br. (6 to 24), and F. benghalensis (17 to 26) have been widely reported as high air pollution-tolerant species and good to best performer in terms of API at different study sites. Statistically, previous studies show that ascorbic acid (R2 = 0.90) has good correlation with APTI among all the parameters. The plant species with high pollution tolerance capacity can be recommended for future plantation and green belt development.
Collapse
Affiliation(s)
- Akshay Kumar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Ajai Singh
- Department of Civil Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, New Delhi, India, 110065
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia University, New Delhi, India, 110025
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222.
| |
Collapse
|
5
|
Papadopoulou S, Stefi AL, Meletiou-Christou MS, Christodoulakis NS, Gkikas D, Rhizopoulou S. Structural and Physiological Traits of Compound Leaves of Ceratonia siliqua Trees Grown in Urban and Suburban Ambient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:514. [PMID: 36771599 PMCID: PMC9920102 DOI: 10.3390/plants12030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Ceratonia siliqua L. (carob tree) is an endemic plant to the eastern Mediterranean region. In the present study, anatomical and physiological traits of successively grown compound leaves (i.e., the first, third, fifth and seventh leaves) of C. siliqua were investigated in an attempt to evaluate their growth under urban and suburban environmental conditions. Chlorophyll and phenolic content, as well as the specific leaf area of the compound leaves were determined. Structural traits of leaflets (i.e., thickness of palisade and spongy parenchyma, abaxial and adaxial epidermis, as well as abaxial and adaxial periclinal wall) were also investigated in expanding and fully expanded leaflets. Fully expanded leaflets from urban sites exhibited increased thickness of the lamina and the palisade parenchyma, while the thickness of the spongy parenchyma was thicker in suburban specimens. The palisade tissue was less extended than the spongy tissue in expanding leaflets, while the opposite held true for the expanded leaflets. Moreover, the thickness of the adaxial and the abaxial epidermises, as well as the adaxial and abaxial periclinal wall were higher in suburban leaflets. The chlorophyll content increased concomitantly with the specific leaf area (SLA) of both expanding and expanded leaflets, and strong positive correlations were detected, while the phenolic content declined with the increased SLA of expanding and expanded leaflets. It is noteworthy that the SLA of expanding leaflets in the suburban site was comparable to the SLA of expanded leaflets experiencing air pollution in urban sites; the size and the mass of leaf blades of C. siliqua possess adaptive features to air pollution. These results, linked to the functional structure of expanding and expanded successive foliar tissues, provide valuable assessment information coordinated with an adaptive process and yield of carob trees exposed to the considered ambient conditions, which have not hitherto been published.
Collapse
|