1
|
Yoshizaki H, Kawaharada R, Tsutsumi S, Okami H, Toriumi A, Miyata E, Nakamura A. Unveiling the Threat of Maternal Advanced Glycation End Products to Fetal Muscle: Palmitoleic Acid to the Rescue. Nutrients 2024; 16:1898. [PMID: 38931253 PMCID: PMC11207069 DOI: 10.3390/nu16121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the plasma of pregnant women with hyperglycemia, potentially inducing oxidative stress and fetal developmental abnormalities. Although intrauterine hyperglycemia has been implicated in excessive fetal growth, the effects of maternal AGEs on fetal development remain unclear. We evaluated the differentiation regulators and cellular signaling in the skeletal muscles of infants born to control mothers (ICM), diabetic mothers (IDM), and diabetic mothers supplemented with either cis-palmitoleic acid (CPA) or trans-palmitoleic acid (TPA). Cell viability, reactive oxygen species levels, and myotube formation were assessed in AGE-exposed C2C12 cells to explore potential mitigation by CPA and TPA. Elevated receptors for AGE expression and decreased Akt and AMPK phosphorylation were evident in rat skeletal muscles in IDM. Maternal palmitoleic acid supplementation alleviated insulin resistance by downregulating RAGE expression and enhancing Akt phosphorylation. The exposure of the C2C12 cells to AGEs reduced cell viability and myotube formation and elevated reactive oxygen species levels, which were attenuated by CPA or TPA supplementation. This suggests that maternal hyperglycemia and plasma AGEs may contribute to skeletal muscle disorders in offspring, which are mitigated by palmitoleic acid supplementation. Hence, the maternal intake of palmitoleic acid during pregnancy may have implications for fetal health.
Collapse
Affiliation(s)
- Hitomi Yoshizaki
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo 113-8602, Japan;
| | - Ritsuko Kawaharada
- Department of Health and Nutrition, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Saki Tsutsumi
- Department of Neurophysiology & Neural Repair, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Akiyo Toriumi
- Department of Public Health, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan;
| | - Eri Miyata
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women’s University, Hino 191-8510, Japan;
| | - Akio Nakamura
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women’s University, Hino 191-8510, Japan;
| |
Collapse
|
2
|
Szustak M, Korkus E, Madaj R, Chworos A, Dąbrowski G, Czaplicki S, Tabandeh E, Maciejewska G, Koziołkiewicz M, Konopka I, Gliszczyńska A, Gendaszewska-Darmach E. Lysophosphatidylcholines Enriched with cis and trans Palmitoleic Acid Regulate Insulin Secretion via GPR119 Receptor. ACS Med Chem Lett 2024; 15:197-204. [PMID: 38352825 PMCID: PMC10860191 DOI: 10.1021/acsmedchemlett.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Among lipids, lysophosphatidylcholines (LPCs) with various fatty acyl chains have been identified as potential agonists of G protein-coupled receptors (GPCRs). Recently, targeting GPCRs has been switched to diabetes and obesity. Concomitantly, our last findings indicate the insulin secretagogue properties of cis and trans palmitoleic acid (16:1, n-7) resulting from GPCR activation, however, associated with different signaling pathways. We here report the synthesis of LPCs bearing two geometrical isomers of palmitoleic acids and investigation of their impact on human pancreatic β cells viability, insulin secretion, and activation of four GPCRs previously demonstrated to be targeted by free fatty acids and LPCs. Moreover, molecular modeling was exploited to investigate the probable binding sites of tested ligands and calculate their affinity toward GPR40, GPR55, GPR119, and GPR120 receptors.
Collapse
Affiliation(s)
- Marcin Szustak
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Eliza Korkus
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Rafal Madaj
- Division
of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute
of Evolutionary Biology, Faculty of Biology, Biological and Chemical
Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Arkadiusz Chworos
- Division
of Bioorganic Chemistry Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Grzegorz Dąbrowski
- Faculty
of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Sylwester Czaplicki
- Faculty
of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Erfan Tabandeh
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Gabriela Maciejewska
- Central
Laboatory of the Instrumental Analysis, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
| | - Maria Koziołkiewicz
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Iwona Konopka
- Faculty
of Food Sciences, Chair of Plant Food Chemistry and Processing, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-957 Olsztyn, Poland
| | - Anna Gliszczyńska
- Department
of Food Chemistry and Biocatalysis, Wroclaw
University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Edyta Gendaszewska-Darmach
- Faculty
of Biotechnology and Food Sciences, Institute of Molecular and Industrial
Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| |
Collapse
|