1
|
Garcia-Canovas M, Parrilla I, Cuello C, Gil MA, Martinez EA. Swine in vitro embryo production: Potential, challenges, and advances. Anim Reprod Sci 2024; 270:107600. [PMID: 39270509 DOI: 10.1016/j.anireprosci.2024.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Pig production, a vital sector of the meat industry, faces demands for improved quality, efficiency, and sustainability. Advancements in breeding, disease control, and artificial insemination have enhanced production, while biotechnologies such as in vitro embryo production (IVP) and genetic engineering offer further progress. In vitro embryo production could facilitate the global exchange of valuable genetic material, accelerate breeding programs, and improve productivity, and it is essential for generating genetically modified (GM) pigs. These GM pigs have two main applications: first, they allow for targeted modifications aimed at improving production traits relevant to pig production in agriculture, such as meat quality and disease resistance. Second, they serve as valuable biomedical models for human disease research, regenerative medicine, and organ transplantation. Yet, despite notable advancements in recent decades, the efficiency of the current IVP systems for porcine embryos remains a challenge. Compared to the in vivo environment, suboptimal culture conditions lead to issues such as elevated polyspermy, poor embryo development, and the production of low-quality blastocysts. This review provides an overview of the key steps and recent advancements in porcine IVP technology. We will emphasize the promising utilization of oocytes from live females of high genetic value through ovum pick-up and the incorporation of extracellular vesicles and cytokines into IVP media. These innovative strategies hold immense potential to significantly enhance embryo development and overall success rates in porcine IVP, and could open the door for significant progress in both agriculture and biomedicine applications.
Collapse
Affiliation(s)
- Manuela Garcia-Canovas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain.
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia 30100, Spain
| |
Collapse
|
2
|
Martínez-Díaz P, Parra A, Montesdeoca M, Barranco I, Roca J. Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review. Animals (Basel) 2024; 14:3135. [PMID: 39518859 PMCID: PMC11545059 DOI: 10.3390/ani14213135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
This systematic review examined research studies on extracellular vesicles (EVs) of the male reproductive tract in livestock species to summarize the research topics and methodologies used, key findings, and future directions. PubMed and Scopus were searched for time ranges up to 1 September 2024, and 1383 articles were identified. The application of screening and eligibility criteria resulted in the selection of 79 articles focusing on male reproductive EVs in livestock. Porcine and bovine male reproductive EVs were the most studied. A variety of EV isolation techniques were used, with ultracentrifugation being the most common. Characterization of male reproductive EVs in livestock was a weak point, with only 24.05% of the articles characterizing EVs according to MISEV guidelines. Inadequate characterization of EVs compromises the reliability of results. The results of 19 articles that provided a good characterization of EVs showed that male reproductive EVs from livestock species are phenotypically and compositionally heterogeneous. These papers also showed that these EVs would be involved in the regulation of sperm functionality. Research on male reproductive EVs in livestock species remains scarce, and further research is needed, which should include appropriate characterization of EVs and aim to find efficient methods to isolate them and assess their involvement in the functionality of spermatozoa and the cells of the female genital tract.
Collapse
Affiliation(s)
| | | | | | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain; (P.M.-D.); (A.P.); (M.M.); (I.B.)
| |
Collapse
|
3
|
Rodriguez-Martinez H, Martinez-Serrano CA, Alvarez-Rodriguez M, Martinez EA, Roca J. Reproductive physiology of the boar: What defines the potential fertility of an ejaculate? Anim Reprod Sci 2024; 269:107476. [PMID: 38664134 DOI: 10.1016/j.anireprosci.2024.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 10/02/2024]
Abstract
Despite decades of research and handling of semen for use in artificial insemination (AI) and other assisted reproductive technologies, 5-10% of selected boar sires are still considered sub-fertile, escaping current assessment methods for sperm quality and resilience to preservation. As end-product, the ejaculate (emitted spermatozoa sequentially exposed to the composite seminal plasma, the SP) ought to define the homeostasis of the testes, the epididymis, and the accessory sexual glands. Yet, linking findings in the ejaculate to sperm production biology and fertility is suboptimal. The present essay critically reviews how the ejaculate of a fertile boar can help us to diagnose both reproductive health and resilience to semen handling, focusing on methods -available and under development- to identify suitable biomarkers for cryotolerance and fertility. Bulk SP, semen proteins and microRNAs (miRNAs) have, albeit linked to sperm function and fertility after AI, failed to enhance reproductive outcomes at commercial level, perhaps for just being components of a complex functional pathway. Hence, focus is now on the interaction sperm-SP, comparing in vivo with ex vivo, and regarding nano-sized lipid bilayer seminal extracellular vesicles (sEVs) as priority. sEVs transport fragile molecules (lipids, proteins, nucleic acids) which, shielded from degradation, mediate cell-to-cell communication with spermatozoa and the female internal genital tract. Such interaction modulates essential reproductive processes, from sperm homeostasis to immunological female tolerance. sEVs can be harvested, characterized, stored, and manipulated, e.g. can be used for andrological diagnosis, selection of breeders, and alternatively be used as additives to improve cryosurvival and fertility.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
| | - Cristina A Martinez-Serrano
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Ctra de la Coruña KM 7,5, Madrid 28040, Spain
| | - Manuel Alvarez-Rodriguez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Ctra de la Coruña KM 7,5, Madrid 28040, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Mateo-Otero Y. Integrating metabolomics into reproduction: Sperm metabolism and fertility enhancement in pigs. Anim Reprod Sci 2024; 269:107539. [PMID: 38926002 DOI: 10.1016/j.anireprosci.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The last decades of research have revealed that many other factors besides gamete genomes are able to determine the reproductive outcomes. Indeed, paternal factors have been observed to be capable of modulating multiple crucial features of the reproductive process, such as sperm physiology, the maternal environment and, even, the offspring health. These recent advances have been encompassed with the emergence of OMICS technologies, as they comprehensively characterise the molecular composition of biological systems. The present narrative review aimed to take a closer look at the potential of these technologies in the field of reproductive biology. This literature revision shows that most studies up to date have followed a non-targeted approach to screen mammalian seminal plasma (SP) and sperm metabolite composition through different metabolome platforms. These studies have proposed metabolites of multiple natures as potential in vivo fertility biomarkers. Yet, targeted approaches can be used to answer specific biological question, and their power is exemplified herein. For instance, metabolomic studies have uncovered not only that glycolysis is the main ATP energy source of pig sperm, but also that sperm metabolism can trigger DNA damage, hence compromise embryo development. In conclusion, this review shows the potential of both non-targeted and targeted metabolomics for the discovery of cell pathways that govern the reproductive process. Understanding these systems could help make progress in different areas, including livestock efficient breeding, the improvement of artificial reproductive technologies, and the development of biomarkers for infertility detection.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK.
| |
Collapse
|
5
|
Toledo-Guardiola SM, Martínez-Díaz P, Martínez-Núñez R, Navarro-Serna S, Soriano-Úbeda C, Romero-Aguirregomezcorta J, Matás C. Sperm functionality is differentially regulated by porcine oviductal extracellular vesicles from the distinct phases of the estrous cycle. Reprod Fertil Dev 2024; 36:RD23239. [PMID: 38713808 DOI: 10.1071/rd23239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/08/2024] [Indexed: 05/09/2024] Open
Abstract
Context Extracellular vesicles (EVs) derived from the oviductal fluid (oEVs) play a critical role in various reproductive processes, including sperm capacitation, fertilisation, and early embryo development. Aims To characterise porcine oEVs (poEVs) from different stages of the estrous cycle (late follicular, LF; early luteal, EL; mid luteal, ML; late luteal, LL) and investigate their impact on sperm functionality. Methods poEVs were isolated, characterised, and labelled to assess their binding to boar spermatozoa. The effects of poEVs on sperm motility, viability, acrosomal status, protein kinase A phosphorylation (pPKAs), tyrosine phosphorylation (Tyr-P), and in in vitro fertility were analysed. Key results poEVs were observed as round or cup-shaped membrane-surrounded vesicles. Statistical analysis showed that poEVs did not significantly differ in size, quantity, or protein concentration among phases of the estrous cycle. However, LF poEVs demonstrated a higher affinity for binding to sperm. Treatment with EL, ML, and LL poEVs resulted in a decrease in sperm progressive motility and total motility. Moreover, pPKA levels were reduced in presence of LF, EL, and ML poEVs, while Tyr-P levels did not differ between groups. LF poEVs also reduced sperm penetration rate and the number of spermatozoa per penetrated oocyte (P Conclusions poEVs from different stages of the estrous cycle play a modulatory role in sperm functionality by interacting with spermatozoa, affecting motility and capacitation, and participating in sperm-oocyte interaction. Implications The differential effects of LF and LL poEVs suggest the potential use of poEVs as additives in IVF systems to regulate sperm-oocyte interaction.
Collapse
Affiliation(s)
- S M Toledo-Guardiola
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - P Martínez-Díaz
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - R Martínez-Núñez
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - S Navarro-Serna
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - C Soriano-Úbeda
- Department of Veterinary Medicine, Surgery, and Anatomy, University of León, León, Spain
| | - J Romero-Aguirregomezcorta
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Murcia, Spain; and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - C Matás
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Murcia, Spain; and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
6
|
Barranco I, Spinaci M, Nesci S, Mateo-Otero Y, Baldassarro VA, Algieri C, Bucci D, Roca J. Seminal extracellular vesicles alter porcine in vitro fertilization outcome by modulating sperm metabolism. Theriogenology 2024; 219:167-179. [PMID: 38437767 DOI: 10.1016/j.theriogenology.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Porcine seminal plasma (SP) is loaded with a heterogeneous population of extracellular vesicles (sEVs) that modulate several reproductive-related processes. This study investigated the effect of two sEV subsets, small (S-sEVs) and large (L-sEVs), on porcine in vitro fertilization (IVF). The sEVs were isolated from nine SP pools (five ejaculates/pool) using a size-exclusion chromatography-based procedure and characterized for quantity (total protein), morphology (cryogenic electron microscopy), size distribution (dynamic light scattering), purity and EV-protein markers (flow cytometry; albumin, CD81, HSP90β). The characterization confirmed the existence of two subsets of high purity (low albumin content) sEVs that differed in size (S- and L-sEVs). In vitro fertilization was performed with in vitro matured oocytes and frozen-thawed spermatozoa and the IVF medium was supplemented during gamete coincubation (1 h at 38.5 °C, 5 % CO2 in a humidified atmosphere) with three different concentrations of each sEV subset: 0 (control, without sEVs), 0.1, and 0.2 mg/mL. The first experiment showed that sEVs, regardless of subset and concentration, decreased penetration rates and total IVF efficiency (P < 0.0001). In a subsequent experiment, it was shown that sEVs, regardless of subset and concentration, impaired the ability of spermatozoa to bind to the zona pellucida of oocytes (P < 0.0001). The following experiment showed that sEVs, regardless of the subset, bound to frozen-thawed sperm but not to in vitro matured oocytes, indicating that sEVs would affect sperm functionality but not oocyte functionality. The lack of effect on oocytes was confirmed by incubating sEVs with oocytes prior to IVF, achieving sperm-zona pellucida binding results similar to those of control. In the last experiment, conducted under IVF conditions, sperm functionality was analyzed in terms of tyrosine phosphorylation, acrosome integrity and metabolism. The sEVs, regardless of the subset, did not affect sperm tyrosine phosphorylation or acrosome integrity, but did influence sperm metabolism by decreasing sperm ATP production under capacitating conditions. In conclusion, this study demonstrated that the presence of sEVs on IVF medium impairs IVF outcomes, most likely by altering sperm metabolism.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy; Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy.
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| |
Collapse
|
7
|
Gabryś J, Gurgul A, Szmatoła T, Kij-Mitka B, Andronowska A, Karnas E, Kucharski M, Wojciechowska-Puchałka J, Kochan J, Bugno-Poniewierska M. Follicular Fluid-Derived Extracellular Vesicles Influence on In Vitro Maturation of Equine Oocyte: Impact on Cumulus Cell Viability, Expansion and Transcriptome. Int J Mol Sci 2024; 25:3262. [PMID: 38542236 PMCID: PMC10970002 DOI: 10.3390/ijms25063262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 07/14/2024] Open
Abstract
Cumulus cell (CC) expansion is pivotal for oocyte maturation, during which CCs release factors that initiate paracrine signaling within the follicular fluid (FF). The FF is abundant in extracellular vesicles (EVs) that facilitate intercellular communication. Although bovine and murine EVs can control cumulus expansion, these effects have not been observed in equines. This study aimed to assess the impact of FF-derived EVs (ffEVs) on equine CC expansion, viability, and transcriptome. Cumulus-oocyte complexes (COCs) that underwent in vitro maturation (IVM) in the presence (200 µg protein/mL) or absence (control) of ffEVs were assessed for cumulus expansion and viability. CCs were isolated after 12 h of IVM, followed by RNA extraction, cDNA library generation, and subsequent transcriptome analysis using next-generation sequencing. Confocal microscopy images illustrated the internalization of labeled ffEVs by CCs. Supplementation with ffEVs significantly enhanced cumulus expansion in both compacted (Cp, p < 0.0001) and expanded (Ex, p < 0.05) COCs, while viability increased in Cp groups (p < 0.01), but decreased in Ex groups (p < 0.05), compared to the controls. Although transcriptome analysis revealed a subtle effect on CC RNA profiles, differentially expressed genes encompassed processes (e.g., MAPK and Wnt signaling) potentially crucial for cumulus properties and, consequently, oocyte maturation.
Collapse
Affiliation(s)
- Julia Gabryś
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland;
| | - Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland;
| | - Barbara Kij-Mitka
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Joanna Wojciechowska-Puchałka
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Joanna Kochan
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| |
Collapse
|
8
|
Barranco I, Alvarez-Barrientos A, Parra A, Martínez-Díaz P, Lucas X, Roca J. Immunophenotype profile by flow cytometry reveals different subtypes of extracellular vesicles in porcine seminal plasma. Cell Commun Signal 2024; 22:63. [PMID: 38263049 PMCID: PMC10807091 DOI: 10.1186/s12964-024-01485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Porcine seminal plasma (SP) is endowed with a heterogeneous population of extracellular vesicles (sEVs). This study evaluated the immunophenotypic profile by high-sensitivity flow cytometry of eight sEV subpopulations isolated according to their size (small [S-sEVs] and large [L-sEVs]) from four different SP sources, namely three ejaculate fractions (the first 10 mL of the sperm rich fraction [SRF-P1], the remaining SRF [SRF-P2], and the post-SRF [PSRF]) and entire ejaculate (EE). METHODS Seminal EVs were isolated using a size exclusion chromatography-based protocol from six SP pools (five ejaculates/pool) of each SP source and characterized using complementary approaches including total protein (BCA™assay), particle size distribution (dynamic light scattering), morphology (transmission electron microscopy), and purity (albumin by Western blot). Expression of CD9, CD63, CD81, CD44 and HSP90β was analyzed in all sEV subpopulations by high-sensitivity flow cytometry according to MIFlowCyt-EV guidelines, including an accurate calibration, controls, and discrimination by CFSE-labelling. RESULTS Each sEV subpopulation exhibited a specific immunophenotypic profile. The percentage of sEVs positive for CD9, CD63, CD81 and HSP90β differed between S- and L-sEVs (P < 0.0001). Specifically, the percentage of sEVs positive for CD9 and CD63 was higher and that for CD81 was lower in S- than L-sEVs in the four SP sources. However, the percentage of HSP90β-positive sEVs was lower in S-sEVs than L-sEVs in the SRF-P1 and EE samples. The percentage of sEVs positive for CD9, CD63, and CD44 also differed among the four SP sources (P < 0.0001), being highest in PSRF samples. Notably, virtually all sEV subpopulations expressed CD44 (range: 88.04-98.50%). CONCLUSIONS This study demonstrated the utility of high-sensitivity flow cytometry for sEV immunophenotyping, allowing the identification of distinct sEV subpopulations that may have different cellular origin, cargo, functions, and target cells.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain.
| | | | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Liu J, Zhang J, Zheng Y, Zhao G, Jiang H, Yuan B. miR-302d Targeting of CDKN1A Regulates DNA Damage and Steroid Hormone Secretion in Bovine Cumulus Cells. Genes (Basel) 2023; 14:2195. [PMID: 38137018 PMCID: PMC10743266 DOI: 10.3390/genes14122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: DNA damage in cumulus cells hinders oocyte maturation and affects steroid hormone secretion. It is crucial to identify the key factors that regulate cellular DNA damage and steroid hormone secretion. (2) Methods: Treatment of bovine cumulus cells with bleomycin to induce DNA damage. The effects of DNA damage on cell biology were determined by detecting changes in DNA damage degree, cell cycle, viability, apoptosis, and steroid hormones. It was verified that mir-302d targeted regulation of CDKN1A expression, and then affected DNA damage and steroid hormone secretion in cumulus cells. (3) Results: Bleomycin induced increased DNA damage, decreased G1-phase cells, increased S-phase cells, inhibited proliferation, promoted apoptosis, affected E2 and P4 secretion, increased CDKN1A expression, and decreased miR-302d expression. Knockdown of CDKN1A reduced DNA damage, increased G1-phase cells, decreased G2-phase cells, promoted proliferation, inhibited apoptosis, increased E2 and P4 secretion, and increased the expression of BRCA1, MRE11, ATM, CDK1, CDK2, CCNE2, STAR, CYP11A1, and HSD3B1. The expression of RAD51, CCND1, p53, and FAS was decreased. Overexpression of CDKN1A resulted in the opposite results. miR-302d targets CDKN1A expression to regulate DNA damage and then affects the cell cycle, proliferation, apoptosis, steroid hormone secretion, and the expression of related genes. (4) Conclusions: miR-302d and CDKN1A were candidate molecular markers for the diagnosis of DNA damage in bovine cumulus cells.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
- Experimental Testing Center, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| |
Collapse
|
10
|
Menjivar NG, Gad A, Gebremedhn S, Ghosh S, Tesfaye D. Granulosa cell-derived extracellular vesicles mitigate the detrimental impact of thermal stress on bovine oocytes and embryos. Front Cell Dev Biol 2023; 11:1142629. [PMID: 37091982 PMCID: PMC10116072 DOI: 10.3389/fcell.2023.1142629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Climate change-induced global warming results in rises in body temperatures above normal physiological levels (hyperthermia) with negative impacts on reproductive function in dairy and beef animals. Extracellular vesicles (EVs), commonly described as nano-sized, lipid-enclosed complexes, harnessed with a plethora of bioactive cargoes (RNAs, proteins, and lipids), are crucial to regulating processes like folliculogenesis and the initiation of different signaling pathways. The beneficial role of follicular fluid-derived EVs in inducing thermotolerance to oocytes during in vitro maturation (IVM) has been evidenced. Here we aimed to determine the capacity of in vitro cultured granulosa cell-derived EVs (GC-EVs) to modulate bovine oocytes’ thermotolerance to heat stress (HS) during IVM. Moreover, this study tested the hypothesis that EVs released from thermally stressed GCs (S-EVs) shuttle protective messages to provide protection against subsequent HS in bovine oocytes. For this, sub-populations of GC-EVs were generated from GCs subjected to 38.5°C (N-EVs) or 42°C (S-EVs) and supplemented to cumulus-oocyte complexes (COCs) matured in vitro at the normal physiological body temperature of the cow (38.5°C) or HS (41°C) conditions. Results indicate that S-EVs improve the survival of oocytes by reducing ROS accumulation, improving mitochondrial function, and suppressing the expression of stress-associated genes thereby reducing the severity of HS on oocytes. Moreover, our findings indicate a carryover impact from the addition of GC-EVs during oocyte maturation in the development to the blastocyst stage with enhanced viability.
Collapse
Affiliation(s)
- Nico G. Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Genus Plc, Deforest, WI, United States
| | - Soham Ghosh
- Cellular Engineering and Mechanobiology Laboratory (CEML), Department of Mechanical Engineering, Translational Medicine Institute (TMI), Colorado State University, Fort Collins, CO, United States
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Dawit Tesfaye,
| |
Collapse
|
11
|
Fan W, Qi Y, Wang Y, Yan H, Li X, Zhang Y. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances. Front Cell Dev Biol 2023; 10:1079387. [PMID: 36684431 PMCID: PMC9849778 DOI: 10.3389/fcell.2022.1079387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) have become a research hotspot in recent years because they act as messengers between cells in the physiological and pathological processes of the human body. It can be produced by the follicle, prostate, embryo, uterus, and oviduct in the reproductive field and exists in the extracellular environment as follicular fluid, semen, uterine cavity fluid, and oviduct fluid. Because extracellular vesicles are more stable at transmitting information, it allows all cells involved in the physiological processes of embryo formation, development, and implantation to communicate with one another. Extracellular vesicles carried miRNAs and proteins as mail, and when the messenger delivers the mail to the recipient cell, the recipient cell undergoes a series of changes. Current research begins with intercepting and decoding the information carried by extracellular vesicles. This information may help us gain a better understanding of the secrets of reproduction, as well as assist reproductive technology as an emerging marker and treatment.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqian Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huiting Yan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Li
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Yingjie Zhang,
| |
Collapse
|