1
|
Thergarajan P, O'Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy. Epilepsy Behav 2024; 163:110219. [PMID: 39693861 DOI: 10.1016/j.yebeh.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.
Collapse
Affiliation(s)
- Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| |
Collapse
|
2
|
Cases‐Cunillera S, Friker LL, Müller P, Becker AJ, Gielen GH. From bedside to bench: New insights in epilepsy-associated tumors based on recent classification updates and animal models on brain tumor networks. Mol Oncol 2024; 18:2951-2965. [PMID: 38899375 PMCID: PMC11619802 DOI: 10.1002/1878-0261.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Low-grade neuroepithelial tumors (LGNTs), particularly those with glioneuronal histology, are highly associated with pharmacoresistant epilepsy. Increasing research focused on these neoplastic lesions did not translate into drug discovery; and anticonvulsant or antitumor therapies are not available yet. During the last years, animal modeling has improved, thereby leading to the possibility of generating brain tumors in mice mimicking crucial genetic, molecular and immunohistological features. Among them, intraventricular in utero electroporation (IUE) has been proven to be a valuable tool for the generation of animal models for LGNTs allowing endogenous tumor growth within the mouse brain parenchyma. Epileptogenicity is mostly determined by the slow-growing patterns of these tumors, thus mirroring intrinsic interactions between tumor cells and surrounding neurons is crucial to investigate the mechanisms underlying convulsive activity. In this review, we provide an updated classification of the human LGNT and summarize the most recent data from human and animal models, with a focus on the crosstalk between brain tumors and neuronal function.
Collapse
Affiliation(s)
- Silvia Cases‐Cunillera
- INSERM U1266, Neuronal Signaling in Epilepsy and GliomaInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Lea L. Friker
- Institute of NeuropathologyUniversity Hospital BonnBonnGermany
| | - Philipp Müller
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Albert J. Becker
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | | |
Collapse
|
3
|
Cases-Cunillera S, Quatraccioni A, Rossini L, Ruffolo G, Ono T, Baulac S, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Sankar R, Galanopoulou AS. WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies. Epilepsia 2024; 65:3457-3468. [PMID: 39401070 DOI: 10.1111/epi.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Tomonori Ono
- Epilepsy Center, National Hospital Organization Nagasaki Medical Center, Ōmura, Japan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphane Auvin
- Pediatric Neurology Department, AP-HP, Robert Debré University Hospital, CRMR épilepsies Rares, EpiCARE member, Paris, France
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Raman Sankar
- Department of Pediatrics and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominique P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Alves M, Gil B, Villegas-Salmerón J, Salari V, Martins-Ferreira R, Arribas Blázquez M, Menéndez Méndez A, Da Rosa Gerbatin R, Smith J, de Diego-Garcia L, Conte G, Sierra-Marquez J, Merino Serrais P, Mitra M, Fernandez Martin A, Wang Y, Kesavan J, Melia C, Parras A, Beamer E, Zimmer B, Heiland M, Cavanagh B, Parcianello Cipolat R, Morgan J, Teng X, Prehn JHM, Fabene PF, Bertini G, Artalejo AR, Ballestar E, Nicke A, Olivos-Oré LA, Connolly NMC, Henshall DC, Engel T. Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice. Brain Behav Immun 2024; 120:121-140. [PMID: 38777288 DOI: 10.1016/j.bbi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Beatriz Gil
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; The SFI Centre for Research Training in Genomics Data Science, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Valentina Salari
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Immunogenetics Laboratory, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Autoimmunity and Neuroscience Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Marina Arribas Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odon, Spain
| | - Rogerio Da Rosa Gerbatin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Ocupharm Research Group, Faculty of Optics and Optometry, Complutense University of Madrid, Avda. Arcos de Jalon, 118 (28037), Madrid, Spain
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Juan Sierra-Marquez
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Paula Merino Serrais
- Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Meghma Mitra
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ana Fernandez Martin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Yitao Wang
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jaideep Kesavan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ciara Melia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; VivoArchitect, Route de la Corniche 5, 1066 Epalinges, Vaud, Switzerland
| | - Alberto Parras
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mona Heiland
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Rafael Parcianello Cipolat
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - James Morgan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy; Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, Faculty of Medicine, University of Verona, Verona, Italy; Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, Faculty of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
5
|
Wang W, Ma L, Liu M, Zhao Y, Ye W, Li X. Unraveling the links between circulating bioactive factors and epilepsy: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38256. [PMID: 39259090 PMCID: PMC11142776 DOI: 10.1097/md.0000000000038256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 09/12/2024] Open
Abstract
Epidemiological research has shown that a variety of circulating bioactive factors are associated with epilepsy, including macrophage colony-stimulating factor, interleukin-1β, and tumor necrosis factor-α. To further investigate the associations between epilepsy and 41 inflammatory cytokines, this Mendelian randomization was performed. This study presents genome-wide association study summary data on 41 inflammatory cytokines and epilepsy. Epilepsy incorporates generalized and focal epilepsy. A two-sample Mendelian randomization method was used. In order to analyze causal relationships between exposures and outcomes, the inverse variance-weighted method was mainly used. The findings suggested that increased levels of interleukin-1 receptor antagonists and interleukin-5 may be significantly associated with increased risks of focal epilepsy (beta: 0.080, P = .043; beta: 0.083, P = .015). In addition, regulated upon activation normal T cell expressed and secreted factor and Macrophage colony-stimulating factor may be significantly associated with generalized epilepsy (beta: 0.110, P = .042; beta: -0.114, P = .024). Furthermore, inflammatory cytokines such as interleukin-10, interleukin-1β, interleukin-1Ra, interleukin-7, tumor necrosis factor-α, and interferon-γ may be identified as the result of focal epilepsy (beta: 0.152, P = .031; beta: 0.214, P = .037; beta: 0.214, P = .047; beta: 0.222, P = .031; beta: 0.224, P = .025; beta: 0.161, P = .018). This study suggests that interleukin-5 and interleukin-1 receptor antagonists are potentially correlated factors with focal epilepsy etiology, macrophage colony-stimulating factor and regulated upon activation normal T cell expressed and secreted factor are potentially correlated factors with generalized epilepsy etiology, while several inflammatory cytokines possibly contribute to focal epilepsy development downstream.
Collapse
Affiliation(s)
- Wencai Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Luyao Ma
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Menghao Liu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yongqiang Zhao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wei Ye
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xianfeng Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
7
|
Sawant-Pokam PA, Metcalf CS. Getting Excited About Chloride Cotransporters: Neuroinflammation and Inhibition. Epilepsy Curr 2024; 24:194-196. [PMID: 38898900 PMCID: PMC11185213 DOI: 10.1177/15357597241238893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Acute Neuroinflammation Leads to Disruption of Neuronal Chloride Regulation and Consequent Hyperexcitability in the Dentate Gyrus Kurki SN, Srinivasan R, Laine J, Virtanen MA, Ala-Kurikka T, Voipio J, Kaila K. Cell Rep . 2023;42(11):113379. doi:10.1016/j.celrep.2023.113379 Neuroinflammation is a salient part of diverse neurological and psychiatric pathologies that associate with neuronal hyperexcitability, but the underlying molecular and cellular mechanisms remain to be identified. Here, we show that peripheral injection of lipopolysaccharide (LPS) renders the dentate gyrus (DG) hyperexcitable to perforant pathway stimulation in vivo and increases the internal spiking propensity of dentate granule cells (DGCs) in vitro 24 h post-injection (hpi). In parallel, LPS leads to a prominent downregulation of chloride extrusion via KCC2 and to the emergence of NKCC1-mediated chloride uptake in DGCs under experimental conditions optimized to detect specific changes in transporter efficacy. These data show that acute neuroinflammation leads to disruption of neuronal chloride regulation, which unequivocally results in a loss of GABAergic inhibition in the DGCs, collapsing the gating function of the DG. The present work provides a mechanistic explanation for neuroinflammation-driven hyperexcitability and consequent cognitive disturbance.
Collapse
Affiliation(s)
| | - Cameron S Metcalf
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah
| |
Collapse
|
8
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Huang S, Dong W, Lin X, Xu K, Li K, Xiong S, Wang Z, Nie X, Bian JS. Disruption of the Na +/K +-ATPase-purinergic P2X7 receptor complex in microglia promotes stress-induced anxiety. Immunity 2024; 57:495-512.e11. [PMID: 38395698 DOI: 10.1016/j.immuni.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Kangtai Xu
- Department of Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Kun Li
- Department of Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Siping Xiong
- Department of Pathology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, Guangdong, China
| | - Zilong Wang
- Department of Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiaowei Nie
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital of Southern University of Science and Technology, the Second Clinical Medical College of Jinan University), Shenzhen 518020, Guangdong, China.
| | - Jin-Song Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
10
|
Curatolo P, Scheper M, Emberti Gialloreti L, Specchio N, Aronica E. Is tuberous sclerosis complex-associated autism a preventable and treatable disorder? World J Pediatr 2024; 20:40-53. [PMID: 37878130 DOI: 10.1007/s12519-023-00762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants. DATA SOURCES We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms "tuberous sclerosis", "autism", or "autism spectrum disorder"," animal models", "preclinical studies", "neurobiology", and "treatment". RESULTS Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy. CONCLUSIONS Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Mirte Scheper
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Neuroinflammation microenvironment sharpens seizure circuit. Neurobiol Dis 2023; 178:106027. [PMID: 36736598 DOI: 10.1016/j.nbd.2023.106027] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A large set of inflammatory molecules and their receptors are induced in epileptogenic foci of patients with pharmacoresistant epilepsies of structural etiologies or with refractory status epilepticus. Studies in animal models mimicking these clinical conditions have shown that the activation of specific inflammatory signallings in forebrain neurons or glial cells may modify seizure thresholds, thus contributing to both ictogenesis and epileptogenesis. The search for mechanisms underlying these effects has highlighted that inflammatory mediators have CNS-specific neuromodulatory functions, in addition to their canonical activation of immune responses for pathogen recognition and clearance. This review reports the neuromodulatory effects of inflammatory mediators and how they contribute to alter the inhibitory/excitatory balance in neural networks that underlie seizures. In particular, we describe key findings related to the ictogenic role of prototypical inflammatory cytokines (IL-1β and TNF) and danger signals (HMGB1), their modulatory effects of neuronal excitability, and the mechanisms underlying these effects. It will be discussed how harnessing these neuromodulatory properties of immune mediators may lead to novel therapies to control drug-resistant seizures.
Collapse
|
12
|
Flammer J, Neziraj T, Rüegg S, Pröbstel AK. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs 2023; 83:135-158. [PMID: 36696027 PMCID: PMC9875200 DOI: 10.1007/s40265-022-01826-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Collapse
Affiliation(s)
- Julia Flammer
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland. .,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Chaszczewska-Markowska M, Górna K, Bogunia-Kubik K, Brzecka A, Kosacka M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J Clin Med 2023; 12:jcm12030801. [PMID: 36769452 PMCID: PMC9918226 DOI: 10.3390/jcm12030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is frequently associated with a chronic inflammatory state and cardiovascular/metabolic complications. The aim of this study was to evaluate the influence of certain comorbidities on a panel of 45 chemokines and cytokines in OSA patients with special regard to their possible association with cardiovascular diseases. MATERIAL AND METHODS This cross-sectional study was performed on 61 newly diagnosed OSA patients. For the measurement of the plasma concentration of chemokines and cytokines, the magnetic bead-based multiplex assay for the Luminex® platform was used. RESULTS In the patients with concomitant COPD, there were increased levels of pro-inflammatory cytokines (CCL11, CD-40 ligand) and decreased anti-inflammatory cytokine (IL-10), while in diabetes, there were increased levels of pro-inflammatory cytokines (IL-6, TRIAL). Obesity was associated with increased levels of both pro-inflammatory (IL-13) and anti-inflammatory (IL-1RA) cytokines. Hypertension was associated with increased levels of both pro-inflammatory (CCL3) and anti-inflammatory (IL-10) cytokines. Increased daytime pCO2, low mean nocturnal SaO2, and the oxygen desaturation index were associated with increased levels of pro-inflammatory cytokines (CXCL1, PDGF-AB, TNF-α, and IL-15). CONCLUSIONS In OSA patients with concomitant diabetes and COPD, elevated levels of certain pro-inflammatory and decreased levels of certain anti-inflammatory cytokines may favor the persistence of a chronic inflammatory state with further consequences. Nocturnal hypoxemia, frequent episodes of desaturation, and increased daytime pCO2 are factors contributing to the chronic inflammatory state in OSA patients.
Collapse
Affiliation(s)
- Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Katarzyna Górna
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
- Correspondence:
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| |
Collapse
|