1
|
Dhanasekaran S, Liang L, Gurusamy S, Godana EA, Yang Q, Zhang H. Efficacy and mechanism of chitosan nanoparticles containing lemon essential oil against blue mold decay of apples. Int J Biol Macromol 2025; 308:142633. [PMID: 40158577 DOI: 10.1016/j.ijbiomac.2025.142633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Essential oils have significant efficiency in postharvest infection control; however, their practical application is limited by low solubility and bioavailability. Encapsulating essential oils with nanoparticles has emerged as a promising strategy to overcome these limitations. In this study, chitosan nanoparticles loaded with lemon essential oil (CSNP-LO) were successfully formulated and characterized by DLS, FTIR, XRD and SEM. CSNP-LO demonstrated superior antifungal activity against Penicillium expansum, the causative agent for blue mold decay in apples, with a lower minimum inhibitory concentration (MIC) of 20 mg mL-1, compared to LO alone. The CSNP-LO effectively inhibited the spore germination, reduced the germ tube elongation, and suppressed the antioxidant enzyme system in P. expansum spores. In postharvest apples, CSNP-LO significantly reduced blue mold decay incidence by 51.84 % and lesion development by 54.30 % after 7 d of storage. Additionally, CSNP-LO application enhanced the activity of defense-related and antioxidant enzymes, including polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia-lyase (PAL), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), in apples without compromising their quality. Our findings demonstrate the potential of CSNP-LO as a novel and practical approach for controlling postharvest blue mold in apples, contributing to improved storage and shelf-life of fruit crops.
Collapse
Affiliation(s)
- Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Lisha Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Sivaprakash Gurusamy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Dhanasekaran S, Liang L, Gurusamy S, Yang Q, Zhang H. Chitosan stabilized lemon essential oil nanoemulsion controls black mold rot and maintains quality of table grapes. Int J Biol Macromol 2024; 277:134251. [PMID: 39084429 DOI: 10.1016/j.ijbiomac.2024.134251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Aspergillus carbonarius infection leads to black mold rot in table grapes, causes grape decay, reduces fruit quality and marketability, which produces significant economic losses. This study investigated the antifungal efficacy of chitosan-stabilized lemon essential oil nanoemulsion (LO-CNE) against A. carbonarius and black mold rot of table grapes. LO-CNE was prepared with a mean diameter of 130.01 ± 8.34 nm. LO-CNE exhibited superior antifungal activity, reduced spore germination and germ tube elongation, decreased the antioxidant enzyme activities in A. carbonarius; the minimal inhibitory concentration of LO-CNE was determined to be 30 mg/mL. LO-CNE reduced the occurrence of black mold rot by 63 % and lesion diameter by 56.78 % in table grapes compared to the control. At their peak activity level, the grapes treated with LO-CNE exhibited significantly enhanced antioxidant and defense-related enzyme activities. Specifically, polyphenol oxidase activity increased by 2.27-fold, peroxidase activity by 2.22-fold, superoxide dismutase activity by 0.68-fold, catalase activity by 1.61-fold, phenylalanine ammonia-lyase activity by 3.38-fold, and ascorbate peroxidase activity by 2.36-fold. The LO-CNE application reduced natural decay by 95 %, weight loss by 15 % compared to the control, and effectively maintained the quality parameters of table grapes. Therefore, LO-CNE can be considered an alternative disease-control agent for grape preservation.
Collapse
Affiliation(s)
- Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Lisha Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Sivaprakash Gurusamy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Caetano ELA, Novoa San Miguel FJ, Errázuriz León R, Grotto D, Hornos Carneiro MF. Exploring the impact of Agaricus bisporus on mitigating lead reproductive toxicity using the Caenorhabditis elegans model. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109963. [PMID: 38889876 DOI: 10.1016/j.cbpc.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Given that Agaricus bisporus, an edible mushroom, has demonstrated antioxidant properties, our investigation aimed to assess whether Agaricus bisporus could mitigate the toxic effects of lead (Pb) on Caenorhabditis elegans (C. elegans) model. A dose-response study was conducted involving Pb and Agaricus bisporus to determine appropriate doses. Subsequently, a co-exposure study utilizing C. elegans strains N2 and CL2166 was implemented, with groups designated as Control, Pb, Agaricus bisporus, and Pb + Agaricus bisporus. Our findings revealed that co-exposure to Pb + 100 mg/mL Agaricus bisporus resulted in reduced embryonic and larval lethality, increased brood size, and enhanced motility compared to nematodes exposed solely to Pb. Notably, our observations indicated a transfer of reproductive toxicity from nematode parents to their offspring. Thus, Agaricus bisporus may play a significant role in Pb detoxification, suggesting its potential as a natural antioxidant for neutralizing the detrimental effects of Pb on reproductive health.
Collapse
Affiliation(s)
| | | | - Rocío Errázuriz León
- Pontificia Universidad Católica de Chile, Faculty of Chemistry and Pharmacy, Santiago, Chile
| | | | | |
Collapse
|
4
|
Karunarathna SC, Patabendige NM, Lu W, Asad S, Hapuarachchi KK. An In-Depth Study of Phytopathogenic Ganoderma: Pathogenicity, Advanced Detection Techniques, Control Strategies, and Sustainable Management. J Fungi (Basel) 2024; 10:414. [PMID: 38921400 PMCID: PMC11204718 DOI: 10.3390/jof10060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Phytopathogenic Ganoderma species pose a significant threat to global plant health, resulting in estimated annual economic losses exceeding USD (US Dollars) 68 billion in the agriculture and forestry sectors worldwide. To combat this pervasive menace effectively, a comprehensive understanding of the biology, ecology, and plant infection mechanisms of these pathogens is imperative. This comprehensive review critically examines various aspects of Ganoderma spp., including their intricate life cycle, their disease mechanisms, and the multifaceted environmental factors influencing their spread. Recent studies have quantified the economic impact of Ganoderma infections, revealing staggering yield losses ranging from 20% to 80% across various crops. In particular, oil palm plantations suffer devastating losses, with an estimated annual reduction in yield exceeding 50 million metric tons. Moreover, this review elucidates the dynamic interactions between Ganoderma and host plants, delineating the pathogen's colonization strategies and its elicitation of intricate plant defense responses. This comprehensive analysis underscores the imperative for adopting an integrated approach to Ganoderma disease management. By synergistically harnessing cultural practices, biological control, and chemical treatments and by deploying resistant plant varieties, substantial strides can be made in mitigating Ganoderma infestations. Furthermore, a collaborative effort involving scientists, breeders, and growers is paramount in the development and implementation of sustainable strategies against this pernicious plant pathogen. Through rigorous scientific inquiry and evidence-based practices, we can strive towards safeguarding global plant health and mitigating the dire economic consequences inflicted by Ganoderma infections.
Collapse
Affiliation(s)
- Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- National Institute of Fundamental Studies, Hantane Road, Kandy 20000, Sri Lanka
| | | | - Wenhua Lu
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suhail Asad
- School of Biology and Chemistry, Pu’er University, Pu’er 665000, China;
| | - Kalani K. Hapuarachchi
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
5
|
Wang L, Chen M, Zheng X, Li X. Comparative genomics of fungal mutants provides a systemic view of extreme cadmium tolerance in eukaryotic microbes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133354. [PMID: 38154183 DOI: 10.1016/j.jhazmat.2023.133354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Whether eukaryotic organisms can evolve for higher heavy metal resistance in laboratory conditions remains unknown. In this study, we challenged a macrofungi, Pleurotus ostreatus, in a designed microbial evolution and growth arena (MEGA)-plate with an extreme Cd gradient. Within months, the wild-type strain developed 10 mutants, exhibiting a maximum three-fold increase in Cd tolerance and slower growth rates. Genomic sequencing and re-sequencing of the wild-type and ten mutant strains generated about 51 GB data, allowing a comprehensive comparative genomics analysis. As a result, a total of 2512 common single nucleotide polymorphisms, 70 inserts and deletes, 39 copy number variations and 21 structural variations were found in the 10 mutants. The mutant genes were primarily involved in substrate transport. In combination with transcriptome analysis, we discovered that the ten mutants had a distinct Cd-resistant mechanism compared to the wild-type strain. Genes involved in oxidation-reduction, ion transmembrane transport, and metal compartment/efflux are primarily responsible for the extreme Cd tolerance in the P. ostreatus mutants. Our findings contribute to the understanding of eukaryotic Cd resistance at the genome level and establish a foundation for developing bioremediation tools utilizing highly tolerant macrofungi.
Collapse
Affiliation(s)
- Likun Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | | | - Xin Zheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|