1
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
2
|
Savin IA, Sen’kova AV, Goncharova EP, Zenkova MA, Markov AV. Novel Core Gene Signature Associated with Inflammation-to-Metaplasia Transition in Influenza A Virus-Infected Lungs. Int J Mol Sci 2024; 25:11958. [PMID: 39596028 PMCID: PMC11594146 DOI: 10.3390/ijms252211958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Respiratory infections caused by RNA viruses are a major contributor to respiratory disease due to their ability to cause annual epidemics with profound public health implications. Influenza A virus (IAV) infection can affect a variety of host signaling pathways that initiate tissue regeneration with hyperplastic and/or dysplastic changes in the lungs. Although these changes are involved in lung recovery after IAV infection, in some cases, they can lead to serious respiratory failure. Despite being ubiquitously observed, there are limited data on the regulation of long-term recovery from IAV infection leading to normal or dysplastic repair represented by inflammation-to-metaplasia transition in mice or humans. To address this knowledge gap, we used integrative bioinformatics analysis with further verification in vivo to elucidate the dynamic molecular changes in IAV-infected murine lung tissue and identified the core genes (Birc5, Cdca3, Plk1, Tpx2, Prc1. Rrm2, Nusap1, Spag5, Top2a, Mcm5) and transcription factors (E2F1, E2F4, NF-YA, NF-YB, NF-YC) involved in persistent lung injury and regeneration processes, which may serve as gene signatures reflecting the long-term effects of IAV proliferation on the lung. Further analysis of the identified core genes revealed their involvement not only in IAV infection but also in COVID-19 and lung neoplasm development, suggesting their potential role as biomarkers of severe lung disease and its complications represented by abnormal epithelial proliferation and oncotransformation.
Collapse
|
3
|
Wang YC, Tsai CH, Wang YC, Yen LC, Chang YW, Sun JR, Lin TY, Chiu CH, Chao YC, Chang FY. SARS-CoV-2 nucleocapsid protein, rather than spike protein, triggers a cytokine storm originating from lung epithelial cells in patients with COVID-19. Infection 2024; 52:955-983. [PMID: 38133713 PMCID: PMC11143065 DOI: 10.1007/s15010-023-02142-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE The aim of this study was to elucidate the factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may initiate cytokine cascades and correlate the clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with their serum cytokine profiles. METHODS Recombinant baculoviruses displaying SARS-CoV-2 spike or nucleocapsid protein were constructed and transfected into A549 cells and THP-1-derived macrophages, to determine which protein initiate cytokine release. SARS-CoV-2-specific antibody titers and cytokine profiles of patients with COVID-19 were determined, and the results were associated with their clinical characteristics, such as development of pneumonia or length of hospital stay. RESULTS The SARS-CoV-2 nucleocapsid protein, rather than the spike protein, triggers lung epithelial A549 cells to express IP-10, RANTES, IL-16, MIP-1α, basic FGF, eotaxin, IL-15, PDGF-BB, TRAIL, VEGF-A, and IL-5. Additionally, serum CTACK, basic FGF, GRO-α, IL-1α, IL-1RA, IL-2Rα, IL-9, IL-15, IL-16, IL-18, IP-10, M-CSF, MIF, MIG, RANTES, SCGF-β, SDF-1α, TNF-α, TNF-β, VEGF, PDGF-BB, TRAIL, β-NGF, eotaxin, GM-CSF, IFN-α2, INF-γ, and MCP-1 levels were considerably increased in patients with COVID-19. Among them, patients with pneumonia had higher serum IP-10 and M-CSF levels than patients without. Patients requiring less than 3 weeks to show negative COVID-19 tests after contracting COVID-19 had higher serum IP-10 levels than the remaining patients. CONCLUSION Our study revealed that nucleocapsid protein, lung epithelial cells, and IP-10 may be potential targets for the development of new strategies to prevent, or control, severe COVID-19.
Collapse
Affiliation(s)
- Ying-Chuan Wang
- Department of Family Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Chih-Hsuan Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Yao-Wen Chang
- Taoyuan Armed Forces General Hospital, Taoyuan, 32551, Taiwan, ROC
| | - Jun-Ren Sun
- Institute of Preventive Medicine, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Te-Yu Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| | - Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC.
| | - Yu-Chan Chao
- Department of Entomology, College of Agriculture and Nature Resources, National Chung Hsing University, Taichung, 40227, Taiwan, ROC
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11499, Taiwan, ROC
| |
Collapse
|
4
|
Gagnon KA, Huang J, Hix OT, Hui VW, Hinds A, Bullitt E, Eyckmans J, Kotton DN, Chen CS. Multicompartment duct platform to study epithelial-endothelial crosstalk associated with lung adenocarcinoma. APL Bioeng 2024; 8:026126. [PMID: 38911024 PMCID: PMC11191334 DOI: 10.1063/5.0207228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Previous lung-on-chip devices have facilitated significant advances in our understanding of lung biology and pathology. Here, we describe a novel lung-on-a-chip model in which human induced pluripotent stem cell-derived alveolar epithelial type II cells (iAT2s) form polarized duct-like lumens alongside engineered perfused vessels lined with human umbilical vein endothelium, all within a 3D, physiologically relevant microenvironment. Using this model, we investigated the morphologic and signaling consequences of the KRASG12D mutation, a commonly identified oncogene in human lung adenocarcinoma (LUAD). We show that expression of the mutant KRASG12D isoform in iAT2s leads to a hyperproliferative response and morphologic dysregulation in the epithelial monolayer. Interestingly, the mutant epithelia also drive an angiogenic response in the adjacent vasculature that is mediated by enhanced secretion of the pro-angiogenic factor soluble uPAR. These results demonstrate the functionality of a multi-cellular in vitro platform capable of modeling mutation-specific behavioral and signaling changes associated with lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | - Veronica W. Hui
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | - Esther Bullitt
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobian & Avedisian School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|