1
|
Sacourbaravi R, Ansari-Asl Z, Hoveizi E, Darabpour E. Poly(vinyl alcohol)/Chitosan Hydrogel Containing Gallic Acid-Modified Fe, Cu, and Zn Metal-Organic Frameworks (MOFs): Preparation, Characterization, and Biological Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61609-61620. [PMID: 39476423 DOI: 10.1021/acsami.4c11053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Hydrogel composites are water-swollen and three-dimensional materials that have been investigated for various biological applications, including controlled drug delivery and tissue engineering, owing to the similarity between their mechanical, electrical, and chemical properties with biological tissues. The hydrogel composites can provide a superior replication of living tissue compared to their single components. In this regard, Fe-BTC, Cu-BTC, and Zn-BTC MOFs were synthesized and modified with gallic acid (GA). The MOFs-based hydrogel composites (M-BTC-GA@PVA-CS) were finally fabricated by freezing-thawing the as-synthesized MOFs, gallic acid, chitosan, and poly(vinyl alcohol) mixture. The obtained hydrogels were characterized using techniques such as FTIR, XRD, UV-vis, SEM, EDS, and TEM. Additionally, their antibacterial activity against E. coli and S. aureus and biocompatibility were investigated. The results showed that the surface modification of M-BTC MOFs with GA improves the antibacterial performance of hydrogels and increases their biocompatibility and cell viability. Among the as-prepared M-BTC MOF-based composites, the Cu-BTC MOF-loaded hydrogels showed the highest antibacterial activity. In contrast, the lowest antibacterial effect was observed for the hydrogels with Fe-BTC MOFs. Furthermore, the H&E staining exhibited improved vascularization in Zn-BTC-GA@PVA-CS and Cu-BTC-GA@PVA-CS scaffolds compared to the Fe-BTC-GA@PVA-CS hydrogel. These MOFs-loaded hydrogels may be suitable for utilization in biological applications such as skin treatment, drug delivery, and cosmetics owing to their excellent antibacterial activity and low cytotoxicity.
Collapse
Affiliation(s)
- Reza Sacourbaravi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Esmaeil Darabpour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| |
Collapse
|
2
|
Wang J, Kang Y, Liu X, Shao B, Peng P, Liu W, Gao C. Semi-Interpenetrating Hydrogel with Long-Term Intrinsic Antibacterial Properties Promotes Healing of Infected Wounds In Vivo. ACS APPLIED BIO MATERIALS 2024; 7:7051-7061. [PMID: 39388623 DOI: 10.1021/acsabm.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial infections significantly deteriorate the process of wound healing. The wound dressings loaded with antimicrobials are widely used to reduce bacterial infections. However, release-based sterilization may increase the risk of drug resistance of bacteria and complicate translation. Thus, the development of long-term intrinsic antibacterial wound dressings is highly desirable. In this study, an intrinsic antibacterial hydrogel (PVA/PPG-HBPL) consisting of poly(vinyl alcohol) (PVA), poly(polyethylene glycol methyl ether methacrylate-co-glycidyl methacrylate) (PPG), and hyperbranched poly-l-lysine (HBPL) was designed and fabricated. The mechanical properties of the PVA/PPG-HBPL hydrogel were enhanced by hydrogen bonding and semi-interpenetrating networks. It also possessed a favorable ability to absorb the wound exudates. The release of antibacterial HBPL was significantly decreased by the methods of cyclic freeze-thawing and covalent cross-linking during hydrogel fabrication, enabling the PVA/PPG-HBPL hydrogel with intrinsic and long-term antibacterial performance. The PVA/PPG-HBPL hydrogel dressing killed 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) cultured on its surface without observable cytotoxicity in vitro. It observably shortened the healing process by 2 orders of magnitude of MRSA colonies compared with the control in the MRSA-infected full-thickness skin wound of rats in vivo even after being soaked in phosphate-buffered saline (PBS) for 21 days (PBS was changed every 3 days). The antibacterial hydrogels could kill wound bacteria in a timely manner, significantly reduce inflammatory cell infiltration, and promote neovascularization and collagen deposition.
Collapse
Affiliation(s)
- Jie Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Bohui Shao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pai Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| |
Collapse
|
3
|
Sharma L, Bisht GS. Unveiling the Self-assembly and Therapeutic Efficacy of Antimicrobial Peptides SA4 Against Multidrug-Resistant A. baumannii. Curr Microbiol 2024; 81:395. [PMID: 39375209 DOI: 10.1007/s00284-024-03923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Infections linked to Acinetobacter baumannii are one of the main risks of modern medicine. Biofilms formed by A. baumannii due to a protective extracellular polysaccharide matrix make them highly tolerant to conventional antibiotics and raise the possibility of antibiotic resistance. Antimicrobial peptides (AMPs) are gaining popularity due to their broad-spectrum actions and key properties of peptide self-assembly, making them a promising alternative to antibiotics. Here, we demonstrate that 12-residue synthetic self-assembled peptide SA4 nanostructures have enough antibacterial action to prevent the growth of mature bacterial biofilms. The SA4 peptide was successfully synthesized by using the solid-phase peptide synthesis method, and its self-assembly was prepared in water. The self-assembled peptide hydrogel formed nanotube structure was observed under a scanning electron microscope and further characterized to confirm their physical and molecular properties. The resulting hydrogel exhibits significant antibacterial activity against MDR A. baumannii strains (MDR-1 and MDR-2), responsible for many nosocomial infections. In addition, at various gel concentrations, this hydrogel has the potential to inhibit about 30-80% of biofilms formed by MDR strains. Furthermore, under a microscope, it has been observed that the rupture of the bacterial cell membrane and cell wall of A. baumannii cells is caused by peptide nanotubes generated by self-assemblies. Thus, peptide-based nanotubes present intriguing avenues for various biomedical applications. This is the first report of bacterial biofilm removal with SA4 peptide nanotubes, and offering a unique treatment for infections linked to biofilms.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India.
| |
Collapse
|
4
|
Sanz del Olmo N, Molina N, Fan Y, Namata F, Hutchinson DJ, Malkoch M. Antibacterial Hydrogel Adhesives Based on Bifunctional Telechelic Dendritic-Linear-Dendritic Block Copolymers. J Am Chem Soc 2024; 146:17240-17249. [PMID: 38865148 PMCID: PMC11212050 DOI: 10.1021/jacs.4c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.
Collapse
Affiliation(s)
- Natalia Sanz del Olmo
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Noemi Molina
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Yanmiao Fan
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Faridah Namata
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Daniel J. Hutchinson
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| | - Michael Malkoch
- Department of Fibre and Polymer
Technology, KTH Royal Institute of Technology, Teknikringen 56-68, 100 44 Stockholm, Sweden
| |
Collapse
|
5
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
6
|
Gai Y, Yin Y, Guan L, Zhang S, Chen J, Yang J, Zhou H, Li J. Rational Design of Bioactive Materials for Bone Hemostasis and Defect Repair. CYBORG AND BIONIC SYSTEMS 2023; 4:0058. [PMID: 37829507 PMCID: PMC10566342 DOI: 10.34133/cbsystems.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Everyday unnatural events such as trauma, accidents, military conflict, disasters, and even medical malpractice create open wounds and massive blood loss, which can be life-threatening. Fractures and large bone defects are among the most common types of injuries. Traditional treatment methods usually involve rapid hemostasis and wound closure, which are convenient and fast but may result in various complications such as nerve injury, deep infection, vascular injury, and deep hematomas. To address these complications, various studies have been conducted on new materials that can be degraded in the body and reduce inflammation and abscesses in the surgical area. This review presents the latest research progress in biomaterials for bone hemostasis and repair. The mechanisms of bone hemostasis and bone healing are first introduced and then principles for rational design of biomaterials are summarized. After providing representative examples of hemostatic biomaterials for bone repair, future challenges and opportunities in the field are proposed.
Collapse
Affiliation(s)
- Yuqi Gai
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Ling Guan
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing, 100081, China
- Department of Medicine,
University of British Columbia, Vancouver, BC, Canada
- National Center for Neurological Disorders, Beijing Tiantan Hospital,
Capital Medical University, Beijing 100070, China
| | - Shengchang Zhang
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Jiatian Chen
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Junyuan Yang
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing, 100081, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Zheng F, Du W, Yang M, Liu K, Zhang S, Xu L, Wen Y. Constructing ROS-Responsive Supramolecular Gel with Innate Antibacterial Properties. Pharmaceutics 2023; 15:2161. [PMID: 37631375 PMCID: PMC10458117 DOI: 10.3390/pharmaceutics15082161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial infections, especially antibiotic-resistant bacterial infections, pose a significant threat to human health. Supramolecular gel with innate antibacterial properties is an advanced material for the treatment of bacterial infections, which have attracted great attention. Herein, a reactive oxygen species (ROS)-responsive innate antibacterial supramolecular gel is developed by a bottom-up approach based on phenylalanine and hydrazide with innate antibacterial properties. The structure of gelators and intermediate products was characterized by proton nuclear magnetic resonance (1H NMR) and a high-resolution mass spectrum (HRMS). The results of 1H NMR and the Fourier transform infrared spectrum (FT-IR) experiment disclosed that hydrogen bonding and the π-π stacking force are the important self-assembly driving forces of gelators. The microstructure and mechanical properties of gel were studied by Scanning electron microscope (SEM) and Rheometer, respectively. An in vitro degradation experiment proved that the gelator has ROS-responsive degradation properties. The in vitro drug release experiment further manifested that antibiotic-loaded gel has ROS-responsive drug-release performances. An in vitro cytotoxicity experiment showed that the supramolecular gel has good biocompatibility and could promote cell proliferation. The in vitro antibacterial experiment proved that the supramolecular gel has excellent inherent antibacterial properties, and the antibacterial rate against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was 98.6% and 99.1%, respectively. The ROS-responsive supramolecular gel as a novel antibacterial agent has great application prospects in treating antibiotic-resistant bacterial-infected wounds and preventing the development of bacterial resistance.
Collapse
Affiliation(s)
- Fen Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Du
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Minggang Yang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kaige Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shanming Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yong Wen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Chen J, Wang Z, Sun J, Zhou R, Guo L, Zhang H, Liu D, Rong M, Ostrikov KK. Plasma-Activated Hydrogels for Microbial Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207407. [PMID: 36929325 DOI: 10.1002/advs.202207407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Indexed: 05/18/2023]
Abstract
A continuous risk from microbial infections poses a major environmental and public health challenge. As an emerging strategy for inhibiting bacterial infections, plasma-activated water (PAW) has proved to be highly effective, environmental-friendly, and non-drug resistant to a broad range of microorganisms. However, the relatively short lifetime of reactive oxygen and nitrogen species (RONS) and the high spreadability of liquid PAW inevitably limit its real-life applications. In this study, plasma-activated hydrogel (PAH) is developed to act as reactive species carrier that allow good storage and controlled slow-release of RONS to achieve long-term antibacterial effects. Three hydrogel materials, including hydroxyethyl cellulose (HEC), carbomer 940 (Carbomer), and acryloyldimethylammonium taurate/VP copolymer (AVC) are selected, and their antibacterial performances under different plasma activation conditions are investigated. It is shown that the composition of the gels plays the key role in determining their biochemical functions after the plasma activation. The antimicrobial performance of AVC is much better than that of PAW and the other two hydrogels, along with the excellent stability to maintain the antimicrobial activity for more than 14 days. The revealed mechanism of the antibacterial ability of the PAH identifies the unique combination of short-lived species (1 O2 , ∙OH, ONOO- and O2 - ) stored in hydrogels. Overall, this study demonstrates the efficacy and reveals the mechanisms of the PAH as an effective and long-term disinfectant capable of delivering and preserving antibacterial chemistries for biomedical applications.
Collapse
Affiliation(s)
- Jinkun Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiachen Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
9
|
Gaálová-Radochová B, Kendra S, Jordao L, Kursawe L, Kikhney J, Moter A, Bujdáková H. Effect of Quorum Sensing Molecule Farnesol on Mixed Biofilms of Candida albicans and Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12030441. [PMID: 36978309 PMCID: PMC10044556 DOI: 10.3390/antibiotics12030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The natural bioactive molecule farnesol (FAR) is widely studied mainly for its antibiofilm and antimicrobial properties. In addition, it increases the effectiveness of some antimicrobial substances, which makes it interesting for the development of combined therapy. In the present work, the effect of FAR either alone or in combination with oxacillin (OXA) on mixed biofilms formed by clinically relevant pathogens, Candida albicans and Staphylococcus aureus, was studied. S. aureus isolates used for biofilm formation originated from blood cultures and central venous catheters (CVC) were characterized in terms of antimicrobial resistance. The minimal biofilm inhibitory concentration (MBIC50) for FAR of 48 h mixed biofilms formed by the C. albicans and methicillin-sensitive S. aureus (MSSA) was determined to be 125 μM, and for the mixed biofilms with methicillin-resistant S. aureus (MRSA) was determined to be 250 μM. Treatment of mixed biofilms with OXA (2 mg/mL) showed ≤4% inhibition; however, the combination of OXA (2 mg/mL) and FAR (300 μM) resulted in 80% inhibition of biofilms. In addition, planktonic cells of S. aureus exhibited an increased susceptibility to OXA, cefoxitin and kanamycin in the presence of FAR (150 and 300 μM). Scanning electron microscopy (SEM) micrographs confirmed patchy biofilm and lack of candidal hyphae in the samples treated with FAR and FAR/OXA in comparison to control and mixed biofilms treated only with OXA. Intriguingly, in a pilot experiment using fluorescence in situ hybridization (FISH), considerable differences in activity (as indicated by ribosome content) of staphylococcal cells were detected. While the activity rate of the staphylococci in mixed biofilms treated with FAR was high, no FISH-positive signal for staphylococcal cells was found in the biofilm treated with FAR/OXA.
Collapse
Affiliation(s)
- Barbora Gaálová-Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9480
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Department of Environmental Health, Research and Development Unit, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Laura Kursawe
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Judith Kikhney
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
- Moter Diagnostics, Marienplatz 9, 12207 Berlin, Germany
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|