1
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
2
|
Zucker CL, Bernstein PS, Schalek RL, Lichtman JW, Dowling JE. High-throughput ultrastructural analysis of macular telangiectasia type 2. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1428777. [PMID: 39140090 PMCID: PMC11319912 DOI: 10.3389/fopht.2024.1428777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Introduction Macular Telangiectasia type 2 (MacTel), is an uncommon form of late-onset, slowly-progressive macular degeneration. Associated with regional Müller glial cell loss in the retina and the amino acid serine synthesized by Müller cells, the disease is functionally confined to a central retinal region - the MacTel zone. Methods We have used high-throughput multi-resolution electron microscopy techniques, optimized for disease analysis, to study the retinas from two women, mother and daughter, aged 79 and 48 years respectively, suffering from MacTel. Results In both eyes, the principal observations made were changes specific to mitochondrial structure both outside and within the MacTel zone in all retinal cell types, with the exception of those in the retinal pigment epithelium (RPE). The lesion areas, which are a hallmark of MacTel, extend from Bruch's membrane and the choriocapillaris, through all depths of the retina, and include cells from the RPE, retinal vascular elements, and extensive hypertrophic basement membrane material. Where the Müller glial cells are lost, we have identified a significant population of microglial cells, exclusively within the Henle fiber layer, which appear to ensheathe the Henle fibers, similar to that seen normally by Müller cells. Discussion Since Müller cells synthesize retinal serine, whereas retinal neurons do not, we propose that serine deficiency, required for normal mitochondrial function, may relate to mitochondrial changes that underlie the development of MacTel. With mitochondrial changes occurring retina-wide, the question remains as to why the Müller cells are uniquely susceptible within the MacTel zone.
Collapse
Affiliation(s)
- Charles L. Zucker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - John E. Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
3
|
Chen J, Curcio CA, Crosson JN. Shotgun lipidomics of human subretinal fluids under rod-dominant retina reveals cone-dominated lipids. Exp Eye Res 2024; 240:109807. [PMID: 38278468 DOI: 10.1016/j.exer.2024.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Subretinal fluid (SRF) accumulates between photoreceptor outer segments and retinal pigment epithelium during rhegmatogenous retinal detachment. Biomolecular components such as lipids originate from cells surrounding the SRF. Knowledge of the composition of these molecules in SRF potentially provides mechanistic insight into the physiologic transfer of lipids between retinal tissue compartments. Using mass spectrometry and tandem mass spectrometry analysis on an electrospray ionization quadrupole-time-of-flight mass spectrometer, we identified a total of 115 lipid molecular species of 11 subclasses and 9 classes in two samples from two patients with rhegmatogenous retinal detachment. These included 47 glycerophosphocholines, 6 glycerophosphoethanolamines, 1 glycerophosphoinositol, 18 sphingomyelins, 9 cholesteryl esters, free cholesterol, 3 ceramides, 22 triacylglycerols and 8 free fatty acids. Glycerophosphocholines were of the highest intensity. By minimizing the formation of different adduct forms or clustering ions of different adducts, we determined the relative intensity of lipid molecular species within the same subclasses. The profiles were compared with those of retinal cells available in the published literature. The glycerophosphocholine profile of SRF was similar to that of cone outer segments, suggesting that outer segment degradation products are constitutively released into the interphotoreceptor matrix, appearing in SRF during detachment. This hypothesis was supported by the retinal distributions of corresponding lipid synthases' mRNA expression obtained from an online resource based on publicly available single-cell sequencing data. In contrast, based on lipid profiles and relevant gene expression in this study, the sources of free cholesterol and cholesteryl esters in SRF appeared more ambiguous, possibly reflecting that outer retina takes up plasma lipoproteins. Further studies to identify and quantify lipids in SRF will help better understand etiology of diseases relevant to outer retina.
Collapse
Affiliation(s)
- Jianzhong Chen
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, GA, United States; Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, GA, United States; Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Porcino C, Mhalhel K, Briglia M, Cometa M, Guerrera MC, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Aragona M. Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish ( Nothobranchius guentheri). Int J Mol Sci 2024; 25:2732. [PMID: 38473977 DOI: 10.3390/ijms25052732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.
Collapse
Affiliation(s)
- Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Germana Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
5
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|