1
|
Wei L, Chen J, Deng Z, Zhang Z, Zhang Z, Duan Q. Genetic diversity and transmission pattern of multidrug-resistant tuberculosis based on whole-genome sequencing in Wuhan, China. Front Public Health 2025; 13:1442987. [PMID: 39935875 PMCID: PMC11810889 DOI: 10.3389/fpubh.2025.1442987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Background Investigating the molecular epidemiological characteristics of multidrug-resistant tuberculosis (MDR-TB) in China's moderate-burden regions, such as Wuhan, is crucial for understanding and controlling disease transmission. Materials and methods This study analyzed MDR-TB isolates from pulmonary tuberculosis cases registered at Wuhan Pulmonary Hospital in 2017. Whole genome sequencing (WGS) was used to identify resistance-conferring mutations, examine their associations with specific Mycobacterium tuberculosis lineages or sublineages, and assess clustering profiles. Results Among the 149 analyzed strains, the most prevalent mutations associated with resistance to 11 anti-tuberculosis drugs were identified as follows: rpoB Ser450Leu (59.73%, rifampicin), katG Ser315Thr (62.42%, isoniazid), embB Met306Val (42.86%, ethambutol), rpsL Lys43Arg (68.13%, streptomycin), pncA Trp68Arg (10.53%, pyrazinamide), gyrA Asp94Gly (22.50%, fluoroquinolones), and rrs 1401A > G (50.00-100.00%, second-line injectable aminoglycosides). Additional mutations were detected in fabG1 c-15C > T (42.86%, ethionamide) and thyX c-16C > T (21.43%, p-aminosalicylic acid). Notably, rare mutations absent from the WHO mutation catalog, such as ahpC c-52C > T and rpsL Lys43Thr, were also observed. The mutation frequency of embB Met306Ile was significantly higher in Lineage 4 (L4) strains than in Lineage 2 (L2) strains (p = 0.0150), while the rpsL Lys43Arg mutation frequency was lower in L4 compared to L2 (p = 0.0333). A total of 31 MDR MTB Mycobacterium tuberculosis isolates formed clusters, resulting in a clustering rate of 20.81% and a recent transmission rate of 11.41%. The clustering rates between L4 and L2 strains were not significantly different (χ2 = 0.0017, p > 0.05). Conclusion The genetic diversity of MDR-TB in Wuhan demonstrates unique characteristics, with evidence of localized transmission. These findings highlight the urgent need to strengthen measures to detect early cases of MDR-TB and control transmission of MDR-TB in the region.
Collapse
Affiliation(s)
- Liqing Wei
- Department of Blood Transfusion, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Chen
- Department of Clinical Laboratory, Wuhan Pulmonary Hospital, Wuhan, China
| | - Zhen Deng
- Department of Clinical Laboratory, Wuhan Pulmonary Hospital, Wuhan, China
| | - Zefang Zhang
- Department of Tuberculosis Prevention and Control, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Zhengbin Zhang
- Department of Tuberculosis Prevention and Control, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Qionghong Duan
- Department of Tuberculosis Prevention and Control, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
2
|
Mollalign H, Alemayehu DH, Beyene D, Melaku K, Ayele A, Chala D, Diriba G, Yenew B, Getahun M, Adnew B, Moga S, Collins JM, Ghodousi A, Bobosha K, Wassie L. Phenotypic drug resistance and genetic mutations linked to resistance among extrapulmonary tuberculosis patients in Ethiopia: Insights from Whole Genome Sequencing. RESEARCH SQUARE 2024:rs.3.rs-5302564. [PMID: 39764135 PMCID: PMC11702858 DOI: 10.21203/rs.3.rs-5302564/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Globally, drug-resistant tuberculosis (DR-TB) is responsible for 13% of mortality attributable to antimicrobial resistance. In Ethiopia, extrapulmonary tuberculosis (EPTB) is a significant public health challenge, and drug resistance (DR) in EPTB is often overlooked. In a cross-sectional study conducted between August 2022 and October 2023, we aimed to explore the magnitude of phenotypic drug resistance and identify genetic mutations linked to resistance using 189 Mycobacterium tuberculosis (MTB) isolates cultured from extrapulmonary clinical specimens. Additionally, we assessed the agreement of the phenotypic and whole genome sequencing (WGS) based genotypic drug resistance detection. We performed phenotypic drug sensitivity testing (pDST) using liquid culture BD BACTECTM MGITTM 960 system and WGS using Illumina NextSeq500/550. The genomic data analysis pipelines MTBSeq and TBProfiler were used to predict drug resistance-conferring mutations. The agreement between the pDST and WGS was analyzed using SPSS version 29.0 software. Our result demonstrated phenotypic resistance to at least one anti-TB drug was detected in 16.9% (32/189) of the study participants. Isoniazid-resistant rifampicin-susceptible-TB (Hr-TB) and multi-drug-resistant TB (MDR-TB) phenotypes accounted for 2.6% (5/189) and 4.2% (8/189) respectively. Prevalence of MDR-TB was 2.4% (4/170) among newly diagnosed and 21.1% (4/19) among previously treated cases. WGS identified more (14/160, 8.75%) rifampicin-resistant genotypes (RR-TB) compared to pDST (8/189, 4.2%). We have identified a putative compensatory mutation for rifampicin (rpoBSer450Leu, rpoCAsp747Ala) for the first time from an EPTB clinical specimen in Ethiopia. Overall, there was a 3.75% rifampicin mono-resistant-TB(RMR-TB) genotype, which remains undetected using the conventional pDST and represented 42.9% (6/14) of the identified RR-TB genotypes. Mutations conferring rifampicin resistance-interim (rpoB.Ser450Ala) represented the majority (83.3%) of RMR-TB. Changes in ethA genes associated with ethionamide resistance were the most common resistance (n=7, 87.5%) in MDR-TB cases. There was a strong agreement between the pDST and WGS-TB Profiler pipeline to detect RR-TB (kappa=0.8) compared to the MTBSeq pipeline (k=0.58). In conclusion, MDR-TB, Hr-TB, and interim-RMR-TB are equally important public health challenges in the realm of EPTB in Ethiopia. The role of WGS is tremendous in detecting borderline/interim RMR-TB, which will help for tailored, personalized treatment strategies.
Collapse
|
3
|
Duffey M, Shafer RW, Timm J, Burrows JN, Fotouhi N, Cockett M, Leroy D. Combating antimicrobial resistance in malaria, HIV and tuberculosis. Nat Rev Drug Discov 2024; 23:461-479. [PMID: 38750260 DOI: 10.1038/s41573-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance poses a significant threat to the sustainability of effective treatments against the three most prevalent infectious diseases: malaria, human immunodeficiency virus (HIV) infection and tuberculosis. Therefore, there is an urgent need to develop novel drugs and treatment protocols capable of reducing the emergence of resistance and combating it when it does occur. In this Review, we present an overview of the status and underlying molecular mechanisms of drug resistance in these three diseases. We also discuss current strategies to address resistance during the research and development of next-generation therapies. These strategies vary depending on the infectious agent and the array of resistance mechanisms involved. Furthermore, we explore the potential for cross-fertilization of knowledge and technology among these diseases to create innovative approaches for minimizing drug resistance and advancing the discovery and development of new anti-infective treatments. In conclusion, we advocate for the implementation of well-defined strategies to effectively mitigate and manage resistance in all interventions against infectious diseases.
Collapse
Affiliation(s)
- Maëlle Duffey
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
- The Global Antibiotic Research & Development Partnership, Geneva, Switzerland
| | - Robert W Shafer
- Department of Medicine/Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | | | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
| | | | | | - Didier Leroy
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland.
| |
Collapse
|
4
|
Billows N, Phelan J, Xia D, Peng Y, Clark TG, Chang YM. Large-scale statistical analysis of Mycobacterium tuberculosis genome sequences identifies compensatory mutations associated with multi-drug resistance. Sci Rep 2024; 14:12312. [PMID: 38811658 PMCID: PMC11137121 DOI: 10.1038/s41598-024-62946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, has a significant impact on global health worldwide. The development of multi-drug resistant strains that are resistant to the first-line drugs isoniazid and rifampicin threatens public health security. Rifampicin and isoniazid resistance are largely underpinned by mutations in rpoB and katG respectively and are associated with fitness costs. Compensatory mutations are considered to alleviate these fitness costs and have been observed in rpoC/rpoA (rifampicin) and oxyR'-ahpC (isoniazid). We developed a framework (CompMut-TB) to detect compensatory mutations from whole genome sequences from a large dataset comprised of 18,396 M. tuberculosis samples. We performed association analysis (Fisher's exact tests) to identify pairs of mutations that are associated with drug-resistance, followed by mediation analysis to identify complementary or full mediators of drug-resistance. The analyses revealed several potential mutations in rpoC (N = 47), rpoA (N = 4), and oxyR'-ahpC (N = 7) that were considered either 'highly likely' or 'likely' to confer compensatory effects on drug-resistance, including mutations that have previously been reported and validated. Overall, we have developed the CompMut-TB framework which can assist with identifying compensatory mutations which is important for more precise genome-based profiling of drug-resistant TB strains and to further understanding of the evolutionary mechanisms that underpin drug-resistance.
Collapse
Affiliation(s)
- Nina Billows
- Royal Veterinary College, University of London, London, UK.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Dong Xia
- Royal Veterinary College, University of London, London, UK
| | | | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Yu-Mei Chang
- Royal Veterinary College, University of London, London, UK
| |
Collapse
|
5
|
Brunner VM, Fowler PW. Compensatory mutations are associated with increased in vitro growth in resistant clinical samples of Mycobacterium tuberculosis. Microb Genom 2024; 10:001187. [PMID: 38315172 PMCID: PMC10926696 DOI: 10.1099/mgen.0.001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Mutations in Mycobacterium tuberculosis associated with resistance to antibiotics often come with a fitness cost for the bacteria. Resistance to the first-line drug rifampicin leads to lower competitive fitness of M. tuberculosis populations when compared to susceptible populations. This fitness cost, introduced by resistance mutations in the RNA polymerase, can be alleviated by compensatory mutations (CMs) in other regions of the affected protein. CMs are of particular interest clinically since they could lock in resistance mutations, encouraging the spread of resistant strains worldwide. Here, we report the statistical inference of a comprehensive set of CMs in the RNA polymerase of M. tuberculosis, using over 70 000 M. tuberculosis genomes that were collated as part of the CRyPTIC project. The unprecedented size of this data set gave the statistical tests more power to investigate the association of putative CMs with resistance-conferring mutations. Overall, we propose 51 high-confidence CMs by means of statistical association testing and suggest hypotheses for how they exert their compensatory mechanism by mapping them onto the protein structure. In addition, we were able to show an association of CMs with higher in vitro growth densities, and hence presumably with higher fitness, in resistant samples in the more virulent M. tuberculosis lineage 2. Our results suggest the association of CM presence with significantly higher in vitro growth than for wild-type samples, although this association is confounded with lineage and sub-lineage affiliation. Our findings emphasize the integral role of CMs and lineage affiliation in resistance spread and increases the urgency of antibiotic stewardship, which implies accurate, cheap and widely accessible diagnostics for M. tuberculosis infections to not only improve patient outcomes but also prevent the spread of resistant strains.
Collapse
Affiliation(s)
| | - Philip W. Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Qadir M, Faryal R, Khan MT, Khan SA, Zhang S, Li W, Wei DQ, Tahseen S, McHugh TD. Phenotype versus genotype discordant rifampicin susceptibility testing in tuberculosis: implications for a diagnostic accuracy. Microbiol Spectr 2024; 12:e0163123. [PMID: 37982632 PMCID: PMC10783056 DOI: 10.1128/spectrum.01631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An accurate diagnosis of drug resistance in clinical isolates is an important step for better treatment outcomes. The current study observed a higher discordance rate of rifampicin resistance on Mycobacteria Growth Indicator Tube (MGIT) drug susceptibility testing (DST) than Lowenstein-Jenson (LJ) DST when compared with the rpoB sequencing. We detected a few novel mutations and their combination in rifampicin resistance isolates that were missed by MGIT DST and may be useful for the better management of tuberculosis (TB) treatment outcomes. Few novel deletions in clinical isolates necessitate the importance of rpoB sequencing in large data sets in geographic-specific locations, especially high-burden countries. We explored the discordance rate on MGIT and LJ, which is important for the clinical management of rifampicin resistance to avoid the mistreatment of drug-resistant TB. Furthermore, MGIT-sensitive isolates may be subjected to molecular methods of diagnosis for further confirmation and treatment options.
Collapse
Affiliation(s)
- Mehmood Qadir
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rani Faryal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tahir Khan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sajjad Ahmed Khan
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Shulin Zhang
- School of Medicine, Department of Immunology and Microbiology, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dong Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Sabira Tahseen
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Ou X, Song Z, Zhao B, Pei S, Teng C, Zheng H, He W, Xing R, Wang Y, Wang S, Xia H, Zhou Y, He P, Zhao Y. Diagnostic efficacy of an optimized nucleotide MALDI-TOF-MS assay for anti-tuberculosis drug resistance detection. Eur J Clin Microbiol Infect Dis 2024; 43:105-114. [PMID: 37980301 DOI: 10.1007/s10096-023-04700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE We aimed at evaluating the diagnostic efficacy of a nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) assay to detect drug resistance of Mycobacterium tuberculosis. METHODS Overall, 263 M. tuberculosis clinical isolates were selected to evaluate the performance of nucleic MALDI-TOF-MS for rifampin (RIF), isoniazid (INH), ethambutol (EMB), moxifloxacin (MXF), streptomycin (SM), and pyrazinamide (PZA) resistance detection. The results for RIF, INH, EMB, and MXF were compared with phenotypic microbroth dilution drug susceptibility testing (DST) and whole-genome sequencing (WGS), and the results for SM and PZA were compared with those obtained by WGS. RESULTS Using DST as the gold standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 98.2%, 98.7%, and 0.97 for RIF; 92.8%, 99%, and 0.90 for INH; 82.4%, 98.0%, and 0.82 for EMB; and 92.6%, 99.5%, and 0.94 for MXF, respectively. Compared with WGS as the reference standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 97.4%, 100.0%, and 0.98 for RIF; 98.7%, 92.9%, and 0.92 for INH; 96.3%, 100.0%, and 0.98 for EMB; 98.1%, 100.0%, and 0.99 for MXF; 98.0%, 100.0%, and 0.98 for SM; and 50.0%, 100.0%, and 0.65 for PZA. CONCLUSION The nucleotide MALDI-TOF-MS assay yielded highly consistent results compared to DST and WGS, suggesting that it is a promising tool for the rapid detection of sensitivity to RIF, INH, EMB, and MXF.
Collapse
Affiliation(s)
- Xichao Ou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Zexuan Song
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Shaojun Pei
- School of Public Health, Peking University, Beijing, 100191, China
| | - Chong Teng
- Department of Tuberculosis, Beijing Dongcheng District Center for Disease Control, Beijing, 100050, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Wencong He
- Clinical Laboratory, Beijing Tong Ren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ruida Xing
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yiting Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Ping He
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, No. 155 Chang Bai Road, Changping District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
8
|
Silcocks M, Chang X, Thuong Thuong NT, Qin Y, Minh Ha DT, Khac Thai PV, Vijay S, Anh Thu DD, Ngoc Ha VT, Ngoc Nhung H, Huu Lan N, Quynh Nhu NT, Edwards D, Nath A, Pham K, Duc Bang N, Hong Chau TT, Thwaites G, Heemskerk AD, Chuen Khor C, Teo YY, Inouye M, Ong RTH, Caws M, Holt KE, Dunstan SJ. Evolution and transmission of antibiotic resistance is driven by Beijing lineage Mycobacterium tuberculosis in Vietnam. Microbiol Spectr 2023; 11:e0256223. [PMID: 37971428 PMCID: PMC10714959 DOI: 10.1128/spectrum.02562-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Drug-resistant tuberculosis (TB) infection is a growing and potent concern, and combating it will be necessary to achieve the WHO's goal of a 95% reduction in TB deaths by 2035. While prior studies have explored the evolution and spread of drug resistance, we still lack a clear understanding of the fitness costs (if any) imposed by resistance-conferring mutations and the role that Mtb genetic lineage plays in determining the likelihood of resistance evolution. This study offers insight into these questions by assessing the dynamics of resistance evolution in a high-burden Southeast Asian setting with a diverse lineage composition. It demonstrates that there are clear lineage-specific differences in the dynamics of resistance acquisition and transmission and shows that different lineages evolve resistance via characteristic mutational pathways.
Collapse
Affiliation(s)
- Matthew Silcocks
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Xuling Chang
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, , Singapore
- Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Youwen Qin
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dang Thi Minh Ha
- Pham Ngoc Thach Hospital for TB and Lung Disease, District 5, Ho Chi Minh City, Vietnam
| | - Phan Vuong Khac Thai
- Pham Ngoc Thach Hospital for TB and Lung Disease, District 5, Ho Chi Minh City, Vietnam
| | - Srinivasan Vijay
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Do Dang Anh Thu
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - Hoang Ngoc Nhung
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Lan
- Pham Ngoc Thach Hospital for TB and Lung Disease, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Quynh Nhu
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - David Edwards
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Artika Nath
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Kym Pham
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for TB and Lung Disease, District 5, Ho Chi Minh City, Vietnam
| | - Tran Thi Hong Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
- Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - A. Dorothee Heemskerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | | | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Public Health and Primary Care, Cambridge Baker Systems Genomics Initiative, University of Cambridge, Cambridge, United Kingdom
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Birat Nepal Medical Trust, Kathmandu, Nepal
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sarah J. Dunstan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Mekonnen D, Munshea A, Nibret E, Adnew B, Getachew H, Kebede A, Gebrewahid A, Herrera-Leon S, Aramendia AA, Benito A, Abascal E, Jacqueline C, Aseffa A, Herrera-Leon L. Mycobacterium tuberculosis Sub-Lineage 4.2.2/SIT149 as Dominant Drug-Resistant Clade in Northwest Ethiopia 2020-2022: In-silico Whole-Genome Sequence Analysis. Infect Drug Resist 2023; 16:6859-6870. [PMID: 37908783 PMCID: PMC10614653 DOI: 10.2147/idr.s429001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Drug resistance (DR) in Mycobacterium tuberculosis complex (MTBC) is mainly associated with certain lineages and varies across regions and countries. The Beijing genotype is the leading resistant lineage in Asia and western countries. M. tuberculosis (Mtb) (sub) lineages responsible for most drug resistance in Ethiopia are not well described. Hence, this study aimed to identify the leading drug resistance sub-lineages and characterize first-line anti-tuberculosis drug resistance-associated single nucleotide polymorphisms (SNPs). Methods A facility-based cross-sectional study was conducted in 2020-2022 among new and presumptive multidrug resistant-TB (MDR-TB) cases in Northwest Ethiopia. Whole-genome sequencing (WGS) was performed on 161 isolates using Illumina NovaSeq 6000 technology. The SNP mutations associated with drug resistance were identified using MtbSeq and TB profiler Bioinformatics softwares. Results Of the 146 Mtb isolates that were successfully genotyped, 20 (13.7%) harbored one or more resistance-associated SNPs. L4.2.2.ETH was the leading drug-resistant sub-lineage, accounting for 10/20 (50%) of the resistant Mtb. MDR-TB isolates showed extensive mutations against first-line anti-TB drugs. Ser450Leu/(tcg/tTg) for Rifampicin (RIF), Ser315Thr/(agc/aCc) for Isoniazid (INH), Met306Ile/(atg/atA(C)) for Ethambutol (EMB), and Gly69Asp for Streptomycin (STR) were the leading resistance associated mutations which accounted for 56.5%, 89.5%, 47%, and 29.4%, respectively. The presence of both clustered and non-clustered drug resistance (DR) isolates indicated that the epidemics is driven by both new DR development and acquired resistance. Conclusion The high prevalence of drug-resistant TB due to geographically restricted sub-lineages (L4.2.2.ETH) indicates the ongoing local micro epidemics. The Mtb drug resistance surveillance system must be improved. Further evolutionary analysis of L4.2.2.ETH strain is highly desirable to understand evolutionary forces that leads L4.2.2.ETH in to high level DR and transmissible sub-lineage.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | | | | | - Amiro Kebede
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | | | - Silvia Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Benito
- National Center of Tropical Medicine, Institute of Health Carlos III, Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Madrid, Spain
| | - Estefanía Abascal
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Jacqueline
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Laura Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
| |
Collapse
|