1
|
Vasundaradevi R, Sarvajith M, Divyashree S, Deepa N, Achar PN, Sreenivasa MY. Tropical fruit-derived Lactiplantibacillus as potential probiotic and antifungal agents against Fusarium oxysporum. Sci Rep 2025; 15:2144. [PMID: 39821089 PMCID: PMC11739408 DOI: 10.1038/s41598-025-85190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Fifty-five lactic acid bacteria (LAB) were isolated from seven selected tropical fruits, with Solanum nigrum exhibiting the highest LAB prevalence and Couroupita guianenis and Musa fruits showing the lowest counts. Two strains isolated from Ficus racemosa demonstrated significant antifungal activity against Fusarium oxysporum. 16S rDNA sequencing identified these strains as Lactiplantibacillus plantarum MYSVCF3 and Lpb. argentoratensis MYSVCF5. The isolates displayed adaptability to a broad range of environmental conditions, including temperatures of 10-45 °C, pH 2-6, and salt up to 7%. The strains tolerated simulated gastrointestinal conditions of acid (pH-2), phenol (0.6%), and bile (0.3%) suggesting potential probiotic attributes. Lpb. argentoratensis MYSVCF5 inhibited F. oxysporum, two ESKAPE group bacteria (P. aeruginosa, S. aureus) plus S. paratyphi and E. coli. The cell-free supernatant (CFS) of Lpb. argentoratensis MYSVCF5 reduced the growth of fungal biomass by 94% and completely inhibited conidial germination, retaining activity even after extended cold storage. LC-MS/MS analysis identified organic acids in the CFS, with citric acid as the most abundant at 34.9 (± 0.3) µg/mL, followed by lactic (8.3 µg/mL) and malic acids (5.2 µg/mL). This study isolated a novel LAB, a potential candidate having probiotics and antifungal properties for application in food and agriculture.
Collapse
Affiliation(s)
- R Vasundaradevi
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - M Sarvajith
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
- WDRC, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Divyashree
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - N Deepa
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India
| | - Premila N Achar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA30144, USA.
| | - M Y Sreenivasa
- Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India.
| |
Collapse
|
2
|
Eltokhy MA, Saad BT, Eltayeb WN, Alshahrani MY, Radwan SMR, Aboshanab KM, Ashour MSE. Metagenomic nanopore sequencing for exploring the nature of antimicrobial metabolites of Bacillus haynesii. AMB Express 2024; 14:52. [PMID: 38704474 PMCID: PMC11069495 DOI: 10.1186/s13568-024-01701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.
Collapse
Affiliation(s)
- Mohamed A Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Wafaa N Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Sahar M R Radwan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Organization of African Unity St., Cairo, 11651, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Organization of African Unity St., Cairo, 11566, Egypt.
| | - Mohamed S E Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, 11651, Egypt
| |
Collapse
|
3
|
Maione A, Imparato M, Buonanno A, Salvatore MM, Carraturo F, de Alteriis E, Guida M, Galdiero E. Evaluation of Potential Probiotic Properties and In Vivo Safety of Lactic Acid Bacteria and Yeast Strains Isolated from Traditional Home-Made Kefir. Foods 2024; 13:1013. [PMID: 38611319 PMCID: PMC11011881 DOI: 10.3390/foods13071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Probiotics are known for their health-promoting resources and are considered as beneficial microorganisms. The current study focuses on the isolation, and on a complete in vitro and in vivo characterization, of yeast and lactic acid bacteria acquired from traditional homemade kefir in order to assess their potentiality as probiotic candidates. In particular, the isolates Pichia kudriavzevii Y1, Lactococcus lactis subsp. hordniae LAB1 and Lactococcus lactis subsp. lactis LAB2 were subjected to in vitro characterization to evaluate their suitability as probiotics. Resistance to acid and bile salts, auto-aggregation, co-aggregation, hydrophobicity, and biofilm production capability were examined, as well as their antioxidant activity. A safety assessment was also conducted to confirm the non-pathogenic nature of the isolates, with hemolysis assay and antibiotic resistance assessment. Moreover, mortality in the invertebrate model Galleria mellonella was evaluated. Current findings showed that P. kudriavzevii exhibited estimable probiotic properties, placing them as promising candidates for functional foods. Both lactic acid bacteria isolated in this work could be classified as potential probiotics with advantageous traits, including antimicrobial activity against enteric pathogens and good adhesion ability on intestinal cells. This study revealed that homemade kefir could be a beneficial origin of different probiotic microorganisms that may enhance health and wellness.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Marianna Imparato
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Annalisa Buonanno
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Federica Carraturo
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
4
|
Nami Y, Tavallaei O, Kiani A, Moazami N, Samari M, Derakhshankhah H, Jaymand M, Haghshenas B. Anti-oral cancer properties of potential probiotic lactobacilli isolated from traditional milk, cheese, and yogurt. Sci Rep 2024; 14:6398. [PMID: 38493249 PMCID: PMC10944462 DOI: 10.1038/s41598-024-57024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
This study investigates the probiotic and anti-cancer effects of 21 isolated Lactobacillus strains from cheese, milk, and yogurt in Kermanshah, Iran, on oral cancer cell lines KB and OSCC. Four selected isolates (Y33, M45, C5, and C28) displayed good viability and resistance to specific antibiotics. Notably, strains C28 and Y33 exhibited the best results, showing susceptibility or semi-susceptibility to five antibiotics. Y33, with high cell surface hydrophobicity (62%), demonstrated significant anti-pathogenic activity, inhibiting the growth of tested pathogens and displaying strong adhesion to human intestinal Caco-2 cells (52%). Further assessments, including acridine orange/ethidium bromide staining and mRNA expression analysis, revealed four isolates (C5, C28, M45, and Y33) with promising probiotic properties. Particularly, Y33's protein-based extract metabolites showed dose- and time-dependent inhibition of KB and OSCC cancer cell lines, inducing apoptosis without significant cytotoxic effects on normal cells. Y33 (Lactiplantibacillus plantarum) exhibited the strongest probiotic potential, surpassing conventional anti-cancer drugs, suggesting its therapeutic potential for preventing oral cancer cell proliferation and improving survival rates in oral cancer patients.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nesa Moazami
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahya Samari
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Nami Y, Panahi B, Jalaly HM, Rostampour M, Hejazi MA. Probiotic Characterization of LAB isolated from Sourdough and Different Traditional Dairy Products Using Biochemical, Molecular and Computational Approaches. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10234-2. [PMID: 38446395 DOI: 10.1007/s12602-024-10234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study was to identify and isolate lactic acid bacteria (LAB) from indigenous sourdough and dairy samples in Iran, and to assess their probiotic properties in vitro. A total of 560 potential LAB isolates were examined, and 87 demonstrated high survival rates in artificial gastrointestinal fluids without hemolytic activity. The selected isolates exhibited significant auto-aggregation (18.35 to 79.42%) and co-aggregation abilities (20.16 to 71.26%). Additionally, the isolates displayed varying degrees of cell surface hydrophobicity (12.32 to 76.24%). Results indicated that 19 LAB isolates had cholesterol assimilation rates exceeding 30%. Moreover, forty strains tested negative for all twelve assessed pathogenic genes and exhibited good adhesion to human intestinal epithelial cells (13.47 to 49.12%). Furthermore, 24 isolates formed strong biofilms, 29 formed moderate biofilms, and 23 formed weak biofilms. Except for isolates ABRIIFBI-8, ABRIIFBI-16, ABRIIFBI-23, ABRIIFBI-43, ABRIIFBI-56, and ABRIIFBI-62, most isolates were capable of producing exopolysaccharides. Consequently, LAB strains naturally occurring in sourdough and traditional dairy samples were suggested as potential probiotic candidates for incorporation into functional foods.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, 29 Bahman Boulevard, P. O. Box 5156915598, Tabriz, Iran.
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, Tabriz, Iran
| | - Hossein Mohammadzadeh Jalaly
- Department of Genomics, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, Tabriz, Iran
| | - Mohaddeseh Rostampour
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, 29 Bahman Boulevard, P. O. Box 5156915598, Tabriz, Iran
| | - Mohammad Amin Hejazi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, 29 Bahman Boulevard, P. O. Box 5156915598, Tabriz, Iran
| |
Collapse
|
6
|
Surve SV, Shinde DB, Fernandes JM, Sharma S, Vijayvargiya M, Kadam K, Kulkarni R. Laboratory domestication of Lactiplantibacillus plantarum alters some phenotypic traits but causes non-novel genomic impact. J Appl Microbiol 2024; 135:lxae035. [PMID: 38341274 DOI: 10.1093/jambio/lxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
AIMS Laboratory domestication has been negligibly examined in lactic acid bacteria (LAB). Lactiplantibacillus plantarum is a highly studied and industrially relevant LAB. Here, we passaged L. plantarum JGR2 in a complex medium to study the effects of domestication on the phenotypic properties and the acquisition of mutations. METHODS AND RESULTS Lactiplantibacillus plantarum JGR2 was passaged in mMRS medium (deMan Rogossa Sharpe supplemented with 0.05% w/v L-cysteine) in three parallel populations for 70 days. One pure culture from each population was studied for various phenotypic properties and genomic alterations. Auto-aggregation of the evolved strains was significantly reduced, and lactic acid production and ethanol tolerance were increased. Other probiotic properties and antibiotic sensitivity were not altered. Conserved synonymous and non-synonymous mutations were observed in mobile element proteins (transposases), β-galactosidase, and phosphoketolases in all three isolates. The evolved strains lost all the repeat regions and some of the functions associated with them. Most of the conserved mutations were found in the genomes of other wild-type strains available in a public database, indicating the non-novel genomic impact of laboratory passaging. CONCLUSIONS Laboratory domestication can affect the phenotypic and genotypic traits of L. plantarum and similar studies are necessary for other important species of LAB.
Collapse
Affiliation(s)
- Sarvesh V Surve
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Dasharath B Shinde
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Joyleen M Fernandes
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Sharoni Sharma
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Monty Vijayvargiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Komal Kadam
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| |
Collapse
|
7
|
Angal A, Shidture S, Syed J, Tiwari DP, Dubey AK, Bhaduri A, Pujari R. In vitro adhesion and anti-inflammatory properties of Limosilactobacillus fermentum FS-10 isolated from infant fecal sample. Int Microbiol 2024; 27:227-238. [PMID: 37269431 DOI: 10.1007/s10123-023-00383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.
Collapse
Affiliation(s)
- Ashvini Angal
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Shubham Shidture
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Jaserah Syed
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Deepika Pandey Tiwari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Ashok Kumar Dubey
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Anirban Bhaduri
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India
| | - Radha Pujari
- Tata Chemicals Limited, Survey No 315, Hissa No 1-14, Paud Rd, Darawali, Pune, Maharashtra, 412111, India.
| |
Collapse
|
8
|
Paul S, Hossain TJ, Ali F, Hossain ME, Chowdhury T, Faisal IK, Ferdouse J. Assessment of the in-vitro probiotic efficacy and safety of Pediococcus pentosaceus L1 and Streptococcus thermophilus L3 isolated from Laban, a popular fermented milk product. Arch Microbiol 2024; 206:82. [PMID: 38294545 DOI: 10.1007/s00203-023-03812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Probiotics are beneficial microorganisms, mostly lactic acid bacteria (LAB), that offer health benefits to the host when consumed in adequate amounts. This study assessed the probiotic efficacy and safety of LAB strains isolated from Laban, a traditional fermented milk product. Seven primarily selected Gram-positive, catalase-negative, non-spore-forming isolates were examined for their antimicrobial activity against the bacterial pathogens Bacillus cereus, Salmonella typhi, Staphylococcus aureus, and Vibrio cholera, and the fungal pathogen Candida albicans. Two isolates, identified as Pediococcus pentosaceus L1 and Streptococcus thermophilus L3, which showed antimicrobial activity against all pathogens, were further evaluated for their probiotic competence. The selected isolates demonstrated strong resistance to low pH, bile salts, and phenol, indicating their potential for gastric endurance. They also exhibited high cell surface hydrophobicity to various hydrocarbons, autoaggregation, and coaggregation properties, demonstrating strong adhesion abilities. In addition, both isolates showed strong antioxidant activity and were non-hemolytic. Although the isolates had some resistance to certain antibiotics, they were generally susceptible to commonly used antibiotics. The two LAB strains also exhibited promising technological properties, such as milk coagulation and exopolysaccharide production, indicating their potential to enhance the quality of dairy products. The results suggest that the LAB strains isolated from Laban have strong potential as probiotics, and due to their food origin, they are highly likely to exhibit maximal efficacy in food and pharmaceutical products for human consumption.
Collapse
Affiliation(s)
- Shanta Paul
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh.
- Biochemistry and Pathogenesis of Microbes - BPM Research Group, Chattogram, 4331, Bangladesh.
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md Elias Hossain
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Tasneem Chowdhury
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Ibrahim Khalil Faisal
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- Biochemistry and Pathogenesis of Microbes - BPM Research Group, Chattogram, 4331, Bangladesh
| | - Jannatul Ferdouse
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh.
| |
Collapse
|
9
|
Rahman MS, Emon DD, Toma MA, Nupur AH, Karmoker P, Iqbal A, Aziz MG, Alim MA. Recent advances in probiotication of fruit and vegetable juices. J Adv Vet Anim Res 2023; 10:522-537. [PMID: 37969792 PMCID: PMC10636081 DOI: 10.5455/javar.2023.j706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 11/17/2023] Open
Abstract
Probiotics are live bacteria beneficial to health when consumed adequately. Health professionals now recommend probiotics on regular diets due to their positive effects on human health. The probiotics that are usually consumed from the market through food products are mostly dairy-based. Fruit and vegetables are gaining popularity as preferred matrices for probiotic carriers to the human body, owing to their high cholesterol content and the lactose intolerance of dairy products. On the other hand, fruits and vegetable juices are rich in nutrient content such as vitamins, minerals, and antioxidants and do not contain a starter culture that can compete with the nutrients. The probiotication of fruit and vegetable juices (apple, carrot, citrus fruit, pome-granate, watermelon, tomato, and pineapple) are performing as efficient probiotic bacteria carriers. This review covers the previous works that highlighted the variety of probiotic fruit and vegetable juices as well as the viability of each probiotic in various products after proper fermentation and storage. In addition, physicochemical and sensory changes that occurred during the processing and storage period have been discussed. Furthermore, strategies (microencapsulation, adding prebiotics, antioxidant addition, maintaining optimum pH, temperature, adaptation with resistance, and good packaging) to improve the stability of probiotic bacteria are outlined, as it is difficult to maintain the stability of probiotic bacteria during storage. Finally, the manuscript discusses the effect of probiotic fruit and vegetable juices on human health.
Collapse
Affiliation(s)
- Md Saydar Rahman
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Dwip Das Emon
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Maria Afroz Toma
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Asmaul Husna Nupur
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Poly Karmoker
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdullah Iqbal
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Gulzarul Aziz
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Abdul Alim
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
10
|
Haghshenas B, Kiani A, Mansoori S, Mohammadi-Noori E, Nami Y. Probiotic properties and antimicrobial evaluation of silymarin-enriched Lactobacillus bacteria isolated from traditional curd. Sci Rep 2023; 13:10916. [PMID: 37407617 DOI: 10.1038/s41598-023-37350-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Nowadays, the increasing use of medicinal plants in the treatment and prevention of diseases has attracted the attention of researchers. The aim of this work was to investigate the probiotic properties and antibacterial and antifungal activity of silymarin-enriched Lactobacillus bacteria against several important pathogenic bacteria and also Aspergillus flavus as one of the harmful molds in the food and health industries. For this purpose, 52 g-positive and catalase-negative bacteria were isolated from 60 traditional curd samples from Ilam province. Five of the 52 bacterial strains had more than 90% viability in high bile salt and acidic conditions and were selected for further investigation. The five strains with positive results showed good hydrophobicity (≥ 50.30%), auto-aggregation (≥ 53.70%), coaggregation (≥ 28.20%), and high cholesterol removal ability (from 09.20 to 67.20%) and therefore can be considered potential probiotics. The tested strains displayed acceptable antibacterial and antifungal activity against all 12 pathogenic bacteria and A. flavus. Also, the results of the simultaneous antifungal activity of probiotic strains and silymarin showed that the combination of silymarin and probiotics has a significantly better (P < 0.05) antifungal effect than the control group or the probiotic groups alone. Interestingly, in addition to the Limosilactobacillus fermentum C3 strain, the Limosilactobacillus fermentum C18 and Lactiplantibacillus pentosus C20 strains also had significant inhibitory effects against A. flavus when used with silymarin extract in methanol. Meanwhile, silymarin extract in DMSO and PEG increased the antagonistic activity of all five potential probiotic strains.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Saeideh Mansoori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
11
|
Alsulami T, Shehata MG, Ali HS, Alzahrani AA, Fadol MA, Badr AN. Prevalence of Aflatoxins in Camel Milk from the Arabian Peninsula and North Africa: A Reduction Approach Using Probiotic Strains. Foods 2023; 12:foods12081666. [PMID: 37107461 PMCID: PMC10137860 DOI: 10.3390/foods12081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Camel milk is known as a source of nutritional and health supplements. It is known to be rich in peptides and functional proteins. One main issue facing it is related to its contamination, mainly with aflatoxins. The present study aimed to evaluate camel milk samples from different regions while trying to reduce its toxicity using safe approaches based on probiotic bacteria. Collected samples of camel milk were sourced from two main regions: the Arabic peninsula and North Africa. Samples were tested for their contents of aflatoxins (B1 and M1) using two techniques to ensure desired contamination levels. Additionally, feed materials used in camel foods were evaluated. Applied techniques were also tested for their validation. The antioxidant activity of camel milk samples was determined through total phenolic content and antioxidant activity assays. Two strains of probiotic bacteria (Lactobacillus acidophilus NRC06 and Lactobacillus plantarum NRC21) were investigated for their activity against toxigenic fungi. The result revealed high contamination of aflatoxin M1 for all samples investigated. Furthermore, cross-contamination with aflatoxin B1 was recorded. Investigated bacteria were recorded according to their significant inhibition zones against fungal growth (11 to 40 mm). The antagonistic impacts were between 40% and 70% against toxigenic fungi. Anti-aflatoxigenic properties of bacterial strains in liquid media were recorded according to mycelia inhibition levels between 41 to 52.83% against Aspergillus parasiticus ITEM11 with an ability to reduce aflatoxin production between 84.39% ± 2.59 and 90.4% ± 1.32 from media. Bacteria removed aflatoxins from the spiked camel milk in cases involving individual toxin contamination.
Collapse
Affiliation(s)
- Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed G Shehata
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications(SRTA-City), Borg El Arab 21934, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Hatem S Ali
- Food Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abdulhakeem A Alzahrani
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A Fadol
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|