1
|
Deng Y, Wang Q, Pan Z, Lv Z, Chern WK, Oh JT, Chen Z. Unravelling the role of filler surface wettability in long-term mechanical and dielectric properties of epoxy resin composites under hygrothermal aging. J Colloid Interface Sci 2025; 682:50-59. [PMID: 39612763 DOI: 10.1016/j.jcis.2024.11.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Epoxy resin (EP) incorporating inorganic fillers has garnered significant attention in the electrical and electronic industries due to its enhanced dielectric and mechanical properties, but its long-term performance under harsh conditions remains a critical concern. This study investigates the effects of filler surface wettability on the durability of EP-SiO2 composites. Micro-sized SiO2 with hydrophilic (HP) and hydrophobic (HB) surfaces are prepared via surface treatment, before they are incorporated into epoxy resin and subjected to hygrothermal aging at 95 °C and 95 % relative humidity for up to 1200 h. Comprehensive characterizations of wettability, microstructure, mechanical properties, and dielectric performance are conducted. Results show that the composite with hydrophilic fillers, HP-SiO2-EP, exhibits superior dispersion and interfacial adhesion compared to its hydrophobic counterpart, HB-SiO2-EP. Consequently, HP-SiO2-EP demonstrates higher initial tensile strength, Young's modulus, and dielectric breakdown strength. Finite element simulations reveal the breakdown mechanism, highlighting that the hydrophobic SiO2 filler with interfacial defects results in earlier mechanical and dielectric failure. Furthermore, HP-SiO2-EP shows better resistance to hygrothermal aging compared to HB-SiO2-EP, with smaller increases in dielectric constant (+13 % vs. +28 %) and dielectric loss (+234 % vs. +311 %), as well as lower decrease in volume resistivity (-89 % vs. -93 %). This study provides valuable insights into the relationship between filler surface wettability and long-term composite performance, contributing to the design of more reliable materials for advanced dielectric applications.
Collapse
Affiliation(s)
- Yuheng Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Qi Wang
- SP Group - NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhiyu Pan
- SP Group - NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zepeng Lv
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wen Kwang Chern
- SP Group - NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Singapore Power Group, 349277, Singapore
| | - Joo Tien Oh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; SP Group - NTU Joint Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
2
|
Makoś-Chełstowska P, Słupek E, Mielewczyk-Gryń A, Klimczuk T. Magnetic superhydrophobic melamine sponges for crude oil removal from water. CHEMOSPHERE 2024; 346:140533. [PMID: 38303396 DOI: 10.1016/j.chemosphere.2023.140533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 02/03/2024]
Abstract
This paper proposes the preparation of a new sorbent material based on melamine sponges (MS) with superhydrophobic, superoleophilic, and magnetic properties. This study involved impregnating the surface of commercially available MS with eco-friendly deep eutectic solvents (DES) and Fe3O4 nanoparticles. The DES selection was based on the screening of 105 eutectic mixtures using COSMO-RS modeling. Other parameters affecting the efficiency and selectivity of oil removal from water were optimized using the Box-Bhenken model. Menthol:Thymol (1:1)@Fe3O4-MS exhibited the highest sorption capacity for real crude oils (101.7-127.3 g/g). This new sponge demonstrated paramagnetic behavior (31.06 emu/g), superhydrophobicity (151°), superoleophobicity (0°), low density (15.6 mg/cm3), high porosity (99 %), and excellent mechanical stability. Furthermore, it allows multiple regeneration processes without losing its sorption capacity. Based on these benefits, Menthol:Thymol (1:1)@Fe3O4-MS shows promise as an efficient, cost-effective, and eco-friendly substitute for the existing sorbents.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Tomasz Klimczuk
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
3
|
Song YY, Zhang X, Yang JL, Zhang ZQ, Cheng GG, Liu Y, Lv GJ, Yu ZP. Ultrafast sorption of micro-oil droplets within water by superhydrophobic-superoleophilic conical micro-arrays. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Shayesteh H, Khosrowshahi MS, Mashhadimoslem H, Maleki F, Rabbani Y, Emrooz HBM. Durable superhydrophobic/superoleophilic melamine foam based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation. Sci Rep 2023; 13:4515. [PMID: 36934146 PMCID: PMC10024746 DOI: 10.1038/s41598-023-31770-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/20/2023] Open
Abstract
In the present study, fabrications of two eco-friendly superhydrophobic/superoleophilic recyclable foamy-based adsorbents for oil/water mixture separation were developed. Hierarchically biomass (celery)-derived porous carbon (PC) and multi-walled carbon nanotube (MWCNT) were firstly synthesized and loaded on pristine melamine foam (MF) by the simple dip-coating approach by combining silicone adhesive to create superhydrophobic/superoleophilic, recyclable, and reusable three-dimensional porous structure. The prepared samples have a large specific surface area of 240 m2/g (MWCNT), 1126 m2/g (PC), and good micro-mesoporous frameworks. The water contact angle (WCA) values of the as-prepared foams, PC/MF and MWCNT/MF, not only were 159.34° ± 1.9° and 156.42° ± 1.6°, respectively but also had oil contact angle (OCA) of equal to 0° for a wide range of oils and organic solvents. Therefore, PC/MF and MWCNT/MF exhibited superhydrophobicity and superoleophilicity properties, which can be considered effective adsorbents in oil/water mixture separations. In this context, superhydrophobic/superoleophilic prepared foams for kind of different oils and organic solvents were shown to have superior separation performance ranges of 54-143 g/g and 46-137 g/g for PC/MF and MWCNT/MF, respectively, suggesting a new effective porous material for separating oil spills. Also, outstanding recyclability and reusability of these structures in the ten adsorption-squeezing cycles indicated that the WCA and sorption capacity has not appreciably changed after soaking into acidic (pH = 2) and alkaline (pH = 12) as well as saline (3.5% NaCl) solutions. More importantly, the reusability and chemical durability of the superhydrophobic samples made them good opportunities for use in different harsh conditions for oil-spill cleanup.
Collapse
Affiliation(s)
- Hadi Shayesteh
- Faculty of Chemical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran
| | - Mobin Safarzadeh Khosrowshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, No. 424, Hafez St, Tehran, Iran
| | - Yahya Rabbani
- School of Chemical Engineering, College of Engineering, University of Tehran (UT), Tehran, Iran
| | - Hosein Banna Motejadded Emrooz
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846, Iran.
| |
Collapse
|