1
|
Johnson L, De Gascun CF, Hassan J. Investigation of SARS-CoV-2 IgG Binding Capability to Variants of the SARS-CoV-2 Virus. Viral Immunol 2024; 37:404-410. [PMID: 39263777 DOI: 10.1089/vim.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The SARS-CoV-2 pandemic has confirmed that the ability to rapidly mutate may be extremely beneficial for a virus. Not long after the first wave, new variants emerged with altered infectivity, disease severity, and mortality. These new strains most notably had numerous mutations of the spike (S) protein, a surface protein responsible for binding to and entering the host cell. The Delta and Omicron strains demonstrated increased immune evasion and improved binding affinity to the host cell receptor, angiotensin-converting enzyme 2 (ACE2). This study examines the ability of wild-type SARS-CoV-2 IgG to bind Delta and Omicron antigens, as well as their functional binding capabilities to two different S-ACE2 complexes. Twenty SARS-CoV-2 positive samples from patients who had recovered from infection with ancestral SARS-CoV-2 in the first wave of COVID-19 and 10 pre-pandemic control samples were studied. SARS-CoV-2 exposed patients showed significantly higher levels of IgG to SARS-CoV-2 S1/RBD (p < 0.001), N protein (p < 0.001), and Omicron spike variant (p = 0.01), but not to Delta spike variant (p = 0.966) when compared with controls. Furthermore, patient samples showed significantly greater inhibition of SARS-CoV-2 S1/RBD and E484K spike to ACE2 binding (p < 0.001 and p = 0.015, respectively). Conversely, there was no correlation between the binding inhibition of S1/RBD and E484K spike to ACE2 receptor. This study shows there is considerable cross-reactivity of IgG generated by wild-type SARS-CoV-2 infection to the Delta and Omicron variants.
Collapse
Affiliation(s)
- Lucy Johnson
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| | - Cillian F De Gascun
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| | - Jaythoon Hassan
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Joseph JO, Ylade M, Daag JV, Aogo R, Crisostomo MV, Mpingabo P, Premkumar L, Deen J, Katzelnick LC. High transmission of endemic human coronaviruses before and during the COVID-19 pandemic in adolescents in Cebu, Philippines. BMC Infect Dis 2024; 24:1042. [PMID: 39333882 PMCID: PMC11430261 DOI: 10.1186/s12879-024-09672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND SARS-CoV-2, the causative agent of COVID-19, is a betacoronavirus belonging to the same genus as endemic human coronaviruses (hCoVs) OC43 and HKU1 and is distinct from alpha hCoVs 229E and NL63. In a study of adolescents in the Philippines, we evaluated seroprevalence to the hCoVs, whether pre-pandemic hCoV immunity modulated subsequent risk of SARS-CoV-2 infection, and if SARS-CoV-2 infection affected the transmission of the hCoVs. METHODS From 499 individuals screened in 2021 for SARS-CoV-2 receptor binding domain (RBD) antibodies by enzyme-linked immunosorbent assay (ELISA), we randomly selected 59 SARS-CoV-2 negative and 61 positive individuals for further serological evaluation. We measured RBD and spike antibodies to the four hCoVs and SARS-CoV-2 by ELISA in samples from the same participants collected pre-pandemic (2018-2019) and mid-pandemic (2021), before COVID-19 vaccination. RESULTS We observed over 72% seropositivity to the four hCoVs pre-pandemic. Binding antibodies increased with age to 229E and OC43, suggesting endemic circulation, while antibody levels was flat across ages for HKU1 and NL63. During the COVID-19 pandemic, antibodies increased significantly to the RBDs of OC43, NL63, and 229E and spikes of all four hCoVs in both SARS-CoV-2 negative and positive adolescents. Those aged 12-15 years old in 2021 had higher antibodies to RBD and spike of OC43, NL63, and 229E than adolescents the same age in 2019, further demonstrating intense transmission of the hCoVs during the pandemic. CONCLUSIONS We observe a limited impact of the COVID-19 pandemic on endemic hCoV transmission. This study provides insight into co-circulation of hCoVs and SARS-CoV-2.
Collapse
Affiliation(s)
- Janet O Joseph
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Ylade
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Jedas Veronica Daag
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Rosemary Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Vinna Crisostomo
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Patrick Mpingabo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Manfroi B, Cuc BT, Sokal A, Vandenberghe A, Temmam S, Attia M, El Behi M, Camaglia F, Nguyen NT, Pohar J, Salem-Wehbe L, Pottez-Jouatte V, Borzakian S, Elenga N, Galeotti C, Morelle G, de Truchis de Lays C, Semeraro M, Romain AS, Aubart M, Ouldali N, Mahuteau-Betzer F, Beauvineau C, Amouyal E, Berthaud R, Crétolle C, Arnould MD, Faye A, Lorrot M, Benoist G, Briand N, Courbebaisse M, Martin R, Van Endert P, Hulot JS, Blanchard A, Tartour E, Leite-de-Moraes M, Lezmi G, Ménager M, Luka M, Reynaud CA, Weill JC, Languille L, Michel M, Chappert P, Mora T, Walczak AM, Eloit M, Bacher P, Scheffold A, Mahévas M, Sermet-Gaudelus I, Fillatreau S. Preschool-age children maintain a distinct memory CD4 + T cell and memory B cell response after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadl1997. [PMID: 39292802 DOI: 10.1126/scitranslmed.adl1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/19/2024] [Indexed: 09/20/2024]
Abstract
The development of the human immune system lasts for several years after birth. The impact of this maturation phase on the quality of adaptive immunity and the acquisition of immunological memory after infection at a young age remains incompletely defined. Here, using an antigen-reactive T cell (ARTE) assay and multidimensional flow cytometry, we profiled circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive CD3+CD4+CD154+ T cells in children and adults before infection, during infection, and 11 months after infection, stratifying children into separate age groups and adults according to disease severity. During SARS-CoV-2 infection, children younger than 5 years old displayed a lower antiviral CD4+ T cell response, whereas children older than 5 years and adults with mild disease had, quantitatively and phenotypically, comparable virus-reactive CD4+ T cell responses. Adults with severe disease mounted a response characterized by higher frequencies of virus-reactive proinflammatory and cytotoxic T cells. After SARS-CoV-2 infection, preschool-age children not only maintained neutralizing SARS-CoV-2-reactive antibodies postinfection comparable to adults but also had phenotypically distinct memory T cells displaying high inflammatory features and properties associated with migration toward inflamed sites. Moreover, preschool-age children had markedly fewer circulating virus-reactive memory B cells compared with the other cohorts. Collectively, our results reveal unique facets of antiviral immunity in humans at a young age and indicate that the maturation of adaptive responses against SARS-CoV-2 toward an adult-like profile occurs in a progressive manner.
Collapse
Affiliation(s)
- Benoît Manfroi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Bui Thi Cuc
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Aurélien Sokal
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), 92110 Clichy, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Mikaël Attia
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université Paris-Cité, CNRS UMR 3569, 75015 Paris, France
| | - Mohamed El Behi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Francesco Camaglia
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Ngan Thu Nguyen
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Jelka Pohar
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Immunology and Cellular Immunotherapy (ICI) Group, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Layale Salem-Wehbe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Valentine Pottez-Jouatte
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Sibyline Borzakian
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Narcisse Elenga
- Service de Pédiatrie, Centre Hospitalier de Cayenne, 97300 French Guiana
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Bicêtre Hospital, AP-HP, Paris-Saclay University, 94275 Le Kremlin-Bicêtre, France
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Camille de Truchis de Lays
- Service de Pédiatrie. Hôpital Jean-Verdier, AP-HP, Hôpitaux Universitaires Paris Seine-Saint-Denis, 93140 Bondy, France
| | - Michaela Semeraro
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Anne-Sophie Romain
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Mélodie Aubart
- INSERM U1163, Genetic Predisposition to Infectious Diseases, Imagine Institute, Université Paris Cité, Paris F-75015, France
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Naim Ouldali
- Department of General Pediatrics, Pediatric Infectious Disease and Internal Medicine, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France
- Paris Cité University, INSERM UMR 1137, Infection, Antimicrobials, Modelling, Evolution (IAME), 75018 Paris, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Claire Beauvineau
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Elsa Amouyal
- SIREDO Pediatric Oncology Center, Institut Curie, Paris-Science Lettres University, 75005 Paris, France
| | - Romain Berthaud
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Célia Crétolle
- Département de Pédiatrie, Service de Chirurgie viscérale pédiatrique, Hôpital Universitaire Necker-Enfants Malades, GH Paris Centre, 75015 Paris, France
| | - Marc Duval Arnould
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Albert Faye
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Mathie Lorrot
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Grégoire Benoist
- Service de pédiatrie générale et hôpital de jour allergologie, CHU Ambroise-Paré, AP-HP, 92100 Boulogne-Billancourt, France
| | - Nelly Briand
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, 75908 Paris Cedex 15, France
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Peter Van Endert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Jean-Sébastien Hulot
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
| | - Anne Blanchard
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
- Sorbonne Paris Cité, Paris Descartes University, 75015 Paris, France
| | - Eric Tartour
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Department of Immunology, Hôpital Européen Georges-Pompidou, AP-HP, CEDEX 15, 75908 Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Guillaume Lezmi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, 75015 Paris, France
| | - Mickael Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Jean-Claude Weill
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Pascal Chappert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Thierry Mora
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d'Alfort, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Matthieu Mahévas
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Reference Center for Rare Diseases: Cystic Fibrosis and Other Epithelial Respiratory Protein Misfolding Diseases, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Simon Fillatreau
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
4
|
Lesmes-Rodríguez LC, Pedraza-Castillo LN, Jaramillo-Hernández DA. HCoV-NL63 and HCoV-HKU1 seroprevalence and its relationship with the clinical features of COVID-19 patients from Villavicencio, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:340-354. [PMID: 39241243 PMCID: PMC11500678 DOI: 10.7705/biomedica.7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/11/2024] [Indexed: 09/08/2024]
Abstract
INTRODUCTION Due to the cross-reactivity between SARS-CoV-2 and common human coronaviruses, previous infections with these viruses could contribute to serological or cellular cross-protection against severe COVID-19. However, protective immunity may not develop, or pre-existing immunity could increase COVID-19 severity. OBJECTIVE To determine the seroprevalence of IgG antibodies against HCoV-NL63 and HCoV-HKU1 and correlate previous exposure with COVID-19 signs in patients from Villavicencio. MATERIALS AND METHODS A cross-sectional retrospective study was conducted. ELISA technique was used to search for IgG antibodies against HCoV-NL3 and HCoV-HKU1 in patients with positive RT-qPCR results for SARS-CoV-2. Patients were grouped according to COVID-19 clinical characteristics in four groups: group 1: asymptomatic (n = 23); group 2: hospitalized (n = 24); group 3: intensive care units (n = 24), and group 4: dead (n = 22). RESULTS The overall seroprevalence of IgG antibodies against HCoV was 74.2% (n = 69; 95% CI: 65.3-83.1), with 66.7% of HCoV-NL63 (n = 62; 95% CI: 57,1-76,2), and 25.8% of HCoV-HKU1 (n = 24; 95% CI: 16,9-34,7). Based on crosstab analysis, prior exposure to HCoV-NL63 was associated with protection against severe COVID-19 (p = 0.042; adjusted OR = 0.159; 95% CI: 0.027-0.938), and previous coinfection of HCoV-NL63 and HCoVHKU1 was considered a positive association to severe COVID-19 (p = 0.048; adjusted OR = 16.704; 95% CI: 1.020 - 273.670). CONCLUSION To our knowledge, this is the first study addressing seroprevalence of HCoV IgG antibodies in Colombia and Latin America. Previous exposure to HCoV-NL63 could protect against severe COVID-19, whereas patients with underlying HCoV-NL63 and HCoVHKU1 coinfection could be hospitalized with severe signs of COVID-19.
Collapse
Affiliation(s)
- Lida Carolina Lesmes-Rodríguez
- Departamento de Biología y Química, Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio, ColombiaUniversidad de los LlanosDepartamento de Biología y QuímicaFacultad de Ciencias Básicas e IngenieríaUniversidad de los LlanosVillavicencioColombia
| | - Luz Natalia Pedraza-Castillo
- Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, ColombiaUniversidad de los LlanosFacultad de Ciencias Agropecuarias y Recursos NaturalesUniversidad de los LlanosVillavicencioColombia
| | - Dumar Alexander Jaramillo-Hernández
- Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, ColombiaUniversidad de los LlanosFacultad de Ciencias Agropecuarias y Recursos NaturalesUniversidad de los LlanosVillavicencioColombia
| |
Collapse
|
5
|
Zhou F, Vahokoski J, Langeland N, Cox RJ. Impact of ageing on homologous and human-coronavirus-reactive antibodies after SARS-CoV-2 vaccination or infection. NPJ Vaccines 2024; 9:37. [PMID: 38378953 PMCID: PMC10879087 DOI: 10.1038/s41541-024-00817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The endemic human coronaviruses (HCoVs) circulate worldwide yet remain understudied and unmitigated. The observation of elevated levels of HCoV reactive antibodies in COVID-19 patients highlights the urgent necessity of better understanding of HCoV specific immunity. Here, we characterized in-depth the de novo SARS-CoV-2 specific antibody responses and the boosting of HCoV-reactive antibodies after SARS-CoV-2 vaccination or infection in individuals up to 98 years old. All the vaccinees were home-dwelling with no documented SARS-CoV-2 infection before receiving the COVID-19 mRNA vaccine (BNT162b2). The first two vaccine doses elicited potent SARS-CoV-2 spike binding antibodies in individuals up to 80 years. The third dose largely boosted the previously low S2 domain binding and neutralizing antibodies in elderly 80-90 years old, but less so in those above 90 years. The endemic betacoronavirus (HKU1 and OC43) reactive antibodies were boosted in all vaccinees, although to a lesser extent in those above 80 years old. COVID-19 patients had potent elevation of alpha- and betacoronavirus (229E, NL63, HKU1 and OC43) reactive antibodies. In both patients and vaccinees, S2 domain specific antibody increases correlated with SARS-CoV-2 neutralizing and HCoV-reactive antibody responses in all ages, indicating S2 domain as a candidate for future universal coronavirus vaccine design.
Collapse
Affiliation(s)
- Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Juha Vahokoski
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospitalen, Bergen, Norway
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
7
|
Saunders N, Fernandez I, Planchais C, Michel V, Rajah MM, Baquero Salazar E, Postal J, Porrot F, Guivel-Benhassine F, Blanc C, Chauveau-Le Friec G, Martin A, Grzelak L, Oktavia RM, Meola A, Ahouzi O, Hoover-Watson H, Prot M, Delaune D, Cornelissen M, Deijs M, Meriaux V, Mouquet H, Simon-Lorière E, van der Hoek L, Lafaye P, Rey F, Buchrieser J, Schwartz O. TMPRSS2 is a functional receptor for human coronavirus HKU1. Nature 2023; 624:207-214. [PMID: 37879362 PMCID: PMC11331971 DOI: 10.1038/s41586-023-06761-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.
Collapse
Affiliation(s)
- Nell Saunders
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Ignacio Fernandez
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Vincent Michel
- Pathogenesis of Vascular Infections Unit, Institut Pasteur, INSERM, Paris, France
| | - Maaran Michael Rajah
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Eduard Baquero Salazar
- Nanoimaging core, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Jeanne Postal
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Francoise Porrot
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Catherine Blanc
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Gaëlle Chauveau-Le Friec
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Augustin Martin
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Rischa Maya Oktavia
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Annalisa Meola
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Olivia Ahouzi
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Hunter Hoover-Watson
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Matthieu Prot
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
| | - Deborah Delaune
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Marion Cornelissen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Molecular Diagnostic Unit, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Laboratory of Experimental Virology, University of Amsterdam, Amsterdam, The Netherlands
| | - Véronique Meriaux
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1222, Paris, France
| | - Etienne Simon-Lorière
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Paris, France
- National Reference Center for viruses of respiratory infections, Institut Pasteur, Paris, France
| | - Lia van der Hoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Laboratory of Experimental Virology, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Lafaye
- Antibody Engineering Platform, C2RT, Institut Pasteur, Université de Paris Cité, CNRS UMR 3528, Paris, France
| | - Felix Rey
- Structural Virology Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | - Julian Buchrieser
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France.
| | - Olivier Schwartz
- Virus & Immunity Unit, Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Paris, France.
- Vaccine Research Institute, Creteil, France.
| |
Collapse
|
8
|
Joseph JO, Ylade M, Daag JV, Aogo R, Crisostomo MV, Mpingabo P, Premkumar L, Deen J, Katzelnick L. High transmission of endemic human coronaviruses before and during the COVID-19 pandemic in adolescents in Cebu, Philippines. RESEARCH SQUARE 2023:rs.3.rs-3581033. [PMID: 38014070 PMCID: PMC10680936 DOI: 10.21203/rs.3.rs-3581033/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background SARS-CoV-2, the causative agent of COVID-19, is a betacoronavirus belonging to the same genus as endemic human coronaviruses (hCoVs) OC43 and HKU1 and is distinct from alpha hCoVs 229E and NL63. In a study of adolescents in the Philippines, we evaluated the seroprevalence to hCoVs, whether pre-pandemic hCoV immunity modulated subsequent risk of SARS-CoV-2 infection, and if SARS-CoV-2 infection affected the transmission of the hCoVs. Methods From 499 samples collected in 2021 and screened by SARS-CoV-2 receptor binding domain (RBD) enzyme-linked immunosorbent assay (ELISA), we randomly selected 59 SARS-CoV-2 negative and 61 positive individuals for further serological evaluation. We measured RBD and spike antibodies to the four hCoVs and SARS-CoV-2 by ELISA in samples from the same participants collected pre-pandemic (2018-2019) and mid-pandemic (2021), before COVID-19 vaccination. Results We observed over 72% seropositivity to the four hCoVs pre-pandemic. Binding antibodies increased with age to 229E and OC43, suggesting endemic circulation, while immunity was flat across ages for HKU1 and NL63. During the COVID-19 pandemic, antibody level increased significantly to the RBDs of OC43, NL63, and 229E and spikes of all four hCoVs in both SARS-CoV-2 negative and positive adolescents. Those aged 12-15 years old in 2021 had higher antibodies to RBD and spike of OC43, NL63, and 229E than adolescents the same age in 2019, further demonstrating intense transmission of the hCoVs during the pandemic. Conclusions We observe a limited impact of the COVID-19 pandemic on endemic hCoV transmission. This study provides insight into co-circulation of hCoVs and SARS-CoV-2.
Collapse
Affiliation(s)
| | - Michelle Ylade
- National Institutes of Health, University of the Philippines-Manila
| | | | | | | | | | | | - Jacqueline Deen
- National Institutes of Health, University of the Philippines-Manila
| | | |
Collapse
|
9
|
Yin D, Han Z, Lang B, Li Y, Mai G, Chen H, Feng L, Chen YQ, Luo H, Xiong Y, Jing L, Du X, Shu Y, Sun C. Effect of seasonal coronavirus immune imprinting on the immunogenicity of inactivated COVID-19 vaccination. Front Immunol 2023; 14:1195533. [PMID: 37654488 PMCID: PMC10467281 DOI: 10.3389/fimmu.2023.1195533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Pre-existing cross-reactive immunity among different coronaviruses, also termed immune imprinting, may have a comprehensive impact on subsequent SARS-CoV-2 infection and COVID-19 vaccination effectiveness. Here, we aim to explore the interplay between pre-existing seasonal coronaviruses (sCoVs) antibodies and the humoral immunity induced by COVID-19 vaccination. Methods We first collected serum samples from healthy donors prior to COVID-19 pandemic and individuals who had received COVID-19 vaccination post-pandemic in China, and the levels of IgG antibodies against sCoVs and SARS-CoV-2 were detected by ELISA. Wilcoxon rank sum test and chi-square test were used to compare the difference in magnitude and seropositivity rate between two groups. Then, we recruited a longitudinal cohort to collect serum samples before and after COVID-19 vaccination. The levels of IgG antibodies against SARS-CoV-2 S, S1, S2 and N antigen were monitored. Association between pre-existing sCoVs antibody and COVID-19 vaccination-induced antibodies were analyzed by Spearman rank correlation. Results 96.0% samples (339/353) showed the presence of IgG antibodies against at least one subtype of sCoVs. 229E and OC43 exhibited the highest seroprevalence rates at 78.5% and 72.0%, respectively, followed by NL63 (60.9%) and HKU1 (52.4%). The levels of IgG antibodies against two β coronaviruses (OC43 and HKU1) were significantly higher in these donors who had inoculated with COVID-19 vaccines compared to pre-pandemic healthy donors. However, we found that COVID-19 vaccine-induced antibody levels were not significant different between two groups with high levelor low level of pre-existing sCoVs antibody among the longitudinal cohort. Conclusion We found a high prevalence of antibodies against sCoVs in Chinese population. The immune imprinting by sCoVs could be reactivated by COVID-19 vaccination, but it did not appear to be a major factor affecting the immunogenicity of COVID-19 vaccine. These findings will provide insights into understanding the impact of immune imprinting on subsequent multiple shots of COVID-19 vaccines.
Collapse
Affiliation(s)
- Di Yin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Bing Lang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yanjun Li
- Emergency Manage Department, Foshan, China
| | - Guoqin Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hongbiao Chen
- Department of Epidemiology and Infectious Disease Control, Shenzhen, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yao-qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yaming Xiong
- Institute of Clinical Medicine, First People's Hospital of Foshan, Foshan, China
| | - Lin Jing
- Institute of Clinical Medicine, First People's Hospital of Foshan, Foshan, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- National Health Commission of the People's Republic of China (NHC) Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|