1
|
Parsad R, Ahlawat S, Bagiyal M, Arora R, Gera R, Chhabra P, Sharma U, Singh A. Climate resilience in goats: a comprehensive review of the genetic basis for adaptation to varied climatic conditions. Mamm Genome 2025; 36:151-161. [PMID: 39738581 DOI: 10.1007/s00335-024-10101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
The sustainability of livestock systems is widely acknowledged to be threatened by climate change on a worldwide scale. There are worries about the effects this phenomenon may have on the productivity and performance of native livestock species due to its influence on environmental stresses, such as the frequency and severity of unfavorable weather occurrences and the ongoing changes in the agro-ecological landscape. Among the most climatically tolerant livestock animals, goats can survive in a range of environments, from deserts to alpine areas. The domestic goat has undergone significant phenotypic changes in terms of shape, behavior, physiological adaptation, reproduction, and production over their evolutionary journey. It will be possible to better understand the genetic mechanisms underlying successful domestication and the practical breeding strategies leading to the improvement in productivity and resilience to environmental challenges by identifying the genes underlying these modifications. This review explores current knowledge on goat adaptation strategies, emphasizing gene expression patterns, epigenetic modifications, and whole-genome selection signatures. It examines how these molecular mechanisms enable goats to endure heat stress, hypoxia, and other environmental challenges. Furthermore, the review highlights the potential of epigenetic markers and selection signatures in developing climate-resilient goat breeds through marker-assisted selection and genome editing, offering actionable insights into sustainable goat production in the context of global climate change.
Collapse
Affiliation(s)
- Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
- ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ajay Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
2
|
Yu Y, Liu D, Wang F, Kong L, Lin Y, Chen L, Jiang W, Hou X, Xiao Y, Fu G, Liu W, Huo X. Comparative Transcriptomic Analysis and Candidate Gene Identification for Wild Rice (GZW) and Cultivated Rice (R998) Under Low-Temperature Stress. Int J Mol Sci 2024; 25:13380. [PMID: 39769145 PMCID: PMC11676510 DOI: 10.3390/ijms252413380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Rice is a short-day thermophilic crop that originated from the low latitudes of the tropics and subtropics; it requires high temperatures for growth but is sensitive to low temperatures. Therefore, it is highly important to explore and analyze the molecular mechanism of cold tolerance in rice to expand rice planting areas. Here, we report a phenotypic evaluation based on low-temperature stress in indica rice (R998) and wild rice (GZW) and a comparative transcriptomic study conducted at six time points. After 7 days of low-temperature treatment at 10 °C, R998 exhibited obvious yellowing and greening of the leaves, while GZW exhibited high low-temperature resistance, and the leaves maintained their normal morphology and exhibited no yellowing; GZW has a higher survival rate. Principal component analysis (PCA) and cluster analysis of the RNA-seq data revealed that the difference in low-temperature resistance between the two cultivars was caused mainly by the difference in low-temperature treatment after 6 h. Differential expression analysis revealed 2615 unique differentially expressed genes (DEGs) in the R998 material, 1578 unique DEGs in the GZW material, 1874 unique DEGs between R998 and GZW, and 2699 DEGs that were differentially expressed not only between cultivars but also at different time points in the same material under low-temperature treatment. A total of 15,712 DEGs were detected and were significantly enriched in the phenylalanine metabolism, photosynthesis, plant hormone signal transduction, and starch and sucrose metabolism pathways. These 15,712 DEGs included 1937 genes encoding transcription factors (TFs), of which 10 have been identified with functional validation in previous studies. In addition, a gene regulatory network was constructed via weighted gene correlation network analysis (WGCNA), and 12 key genes related to low-temperature tolerance in rice were identified, including five genes encoding TFs, one of which was identified and verified in previous studies. These results provide a theoretical basis for an in-depth understanding of the molecular mechanism of low-temperature tolerance in rice and provide new genetic resources for the study of low-temperature tolerance in rice.
Collapse
Affiliation(s)
- Yongmei Yu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Le Kong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Yanhui Lin
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Leiqing Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Wenjing Jiang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Xueru Hou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Yanxia Xiao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Gongzhen Fu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (W.J.); (Y.X.); (G.F.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Wuge Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| | - Xing Huo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/South China High-Quality Rice Breeding Laboratory (Jointly Established by Ministry of Agriculture and Rural Affairs and Provincial Government)/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory, Guangzhou 510640, China; (D.L.); (F.W.); (L.K.); (L.C.); (X.H.)
| |
Collapse
|
3
|
Gan L, Guo H, Yang Q, Zhou X, Xie Y, Ma X, Gou L, Fang J, Zuo Z. Alkaline Mineral Complex Water Attenuates Transportation-Induced Hepatic Lipid Metabolism Dysregulation by AMPKα-SREBP-1c/PPARα Pathways. Int J Mol Sci 2024; 25:11373. [PMID: 39518926 PMCID: PMC11545688 DOI: 10.3390/ijms252111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Transportation, an unavoidable process in livestock farming, causes metabolic disorders in the body, which then lead to endocrine disruption, being immunocompromised, and growth suppression. Lipid metabolism dysregulation is a critical phenotype induced by transportation. The liver is a vital organ in lipid metabolism, with a role in both lipid synthesis and lipolysis. However, the specific mechanisms by which transportation affects hepatic lipid metabolism remain unclear. This study employed rats as a model to investigate the effects of transportation on hepatic lipid metabolism. Rats subjected to transportation showed altered serum lipid profiles, including decreased serum triglyceride (TG), low-density lipoprotein cholesterol (VLDL-C), and non-esterified fatty acid (NEFA) immediately after transportation (IAT) and serum total cholesterol (TC) on day 3, and increasing serum TG, TC, and low-density lipoprotein cholesterol (LDL-C) on day 10. Meanwhile, fatty droplets in the liver were also reduced at IAT and increased on days 3 and 10. Notably, transportation also affected hepatic-lipid-metabolism-related enzyme activities and signaling pathways, such as increased AMP-activated protein kinase alpha (AMPKα) phosphorylation and modulations in key proteins and genes related to lipid metabolism, decreased hepatic acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) activities at IAT, and increased carnitine palmitoyl transferase 1 alpha (CPT-1α) at IAT and ACC and CPT-1α activities on days 3 and 10. Supplementation with alkaline mineral complex water (AMC) before and after transportation mitigated the adverse effects on hepatic lipid metabolism by modulating the AMPKα-SREBP-1c/PPARα pathway, enhancing lipid synthesis, and reducing the oxidative catabolism of fatty acids. AMC inhibited the transportation-induced activation of AMPKα and restored the balance of lipid-metabolism-related enzymes and pathways. These findings highlight AMC's potential as a therapeutic intervention to alleviate transportation-induced lipid metabolism disorders, offering significant implications for improving animal welfare and reducing economic losses in livestock farming.
Collapse
Affiliation(s)
- Linli Gan
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Qiyuan Yang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China;
| | - Xueke Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; (L.G.); (H.G.); (X.Z.); (Y.X.); (X.M.); (L.G.); (J.F.)
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
4
|
Ouyang D, Liu Y, Xie W. Exploring the Causal Relationship Between Migraine and Insomnia Through Bidirectional Two-Sample Mendelian Randomization: A Bidirectional Causal Relationship. J Pain Res 2024; 17:2407-2415. [PMID: 39050680 PMCID: PMC11268570 DOI: 10.2147/jpr.s460566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction The intricate relationship between migraine and insomnia has been a subject of great interest due to its complex mechanisms. Despite extensive research, understanding the causal link between these conditions remains a challenge. Material and Methods This study employs a bidirectional Mendelian randomization approach to investigate the causal relationship between migraine and insomnia. Risk loci for both conditions were derived from large-scale Genome-Wide Association Studies (GWAS). The primary method of Mendelian Randomization utilized in this study is the Inverse Variance Weighted (IVW) method. Results Our findings indicate a bidirectional causal relationship between migraine and insomnia. In the discovery set, migraine had a significant effect on insomnia (OR=1.02, 95% CI=1.02 (1.01-1.03), PIVW=5.30E-04). However, this effect was not confirmed in the validation set (OR=1.03, 95% CI=1.03 (0.87-1.21), PIVW=0.77). Insomnia also had a significant effect on migraine (OR=1.02, 95% CI=1.02 (0.01-1.03), PIVW=2.67E-08), and this effect was validated in the validation set (OR=2.30, 95% CI=2.30 (1.60-3.30), PIVW=5.78E-06). Conclusion This study provides meaningful insights into the bidirectional causality between migraine and insomnia, highlighting a complex interplay between these conditions. While our findings advance the understanding of the relationship between migraine and insomnia, they also open up new avenues for further research. The results underscore the need for considering both conditions in clinical and therapeutic strategies.
Collapse
Affiliation(s)
- Di Ouyang
- Department of Neurology, Traditional Chinese Medicine Hospital of YuLin, Yulin, Guangxi, People’s Republic of China
| | - Yuhe Liu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of YuLin, Yulin, Guangxi, People’s Republic of China
| | - Weiming Xie
- Department of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
5
|
Yi W, Hu M, Shi L, Li T, Sun H, Qin L, Yan S. Analysis of genetic variants in protein-coding genes of Aoluguya reindeer based on the whole-genome data. Anim Genet 2024; 55:296-298. [PMID: 38319118 DOI: 10.1111/age.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Wenfeng Yi
- College of Animal Science, Jilin University, Changchun, China
| | - Mingyue Hu
- College of Animal Science, Jilin University, Changchun, China
| | - Lulu Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Ting Li
- College of Animal Science, Jilin University, Changchun, China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Lihong Qin
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Adeniyi PA, Adeyelu TT, Shrestha A, Liu CC, Lee CC. Prenatal and postnatal methamphetamine exposure alters prefrontal cortical gene expression and behavior in mice. Front Behav Neurosci 2024; 18:1286872. [PMID: 38505323 PMCID: PMC10949922 DOI: 10.3389/fnbeh.2024.1286872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
Methamphetamine is a highly abused psychostimulant that substantially impacts public health. Prenatal and postnatal methamphetamine exposure alters gene expression, brain development, and behavior in the offspring, although the underlying mechanisms are not fully defined. To assess these adverse outcomes in the offspring, we employed a mouse model of prenatal and postnatal methamphetamine exposure. Juvenile offspring were behaviorally assessed on the open field, novel object recognition, Y-maze, and forced swim tests. In addition, RNA sequencing was used to explore potential alterations in prefrontal cortical gene expression. We found that methamphetamine-exposed mice exhibited decreased locomotor activity and impaired cognitive performance. In addition, differential expression of genes involved in neurotransmission, synaptic plasticity, and neuroinflammation were found with notable changes in dopaminergic signaling pathways. These data suggest potential neural and molecular mechanisms underlying methamphetamine-exposed behavioral changes. The altered expression of genes involved in dopaminergic signaling and synaptic plasticity highlights potential targets for therapeutic interventions for substance abuse disorders and related psychiatric complications.
Collapse
Affiliation(s)
- Philip A. Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Tolulope T. Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
7
|
Kannan G, Batchu P, Naldurtiker A, Dykes GS, Gurrapu P, Kouakou B, Terrill TH, McCommon GW. Habituation to Livestock Trailer and Its Influence on Stress Responses during Transportation in Goats. Animals (Basel) 2023; 13:ani13071191. [PMID: 37048447 PMCID: PMC10093667 DOI: 10.3390/ani13071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
This experiment was conducted to determine the effects of habituation to livestock trailers on stress responses in goats transported for long periods. Intact male Spanish goats (12-month old; BW = 31.6 ± 0.34 kg; N = 168) were separated into two treatment (TRT) groups and maintained on two different paddocks. Concentrate supplement was fed to one group inside two livestock trailers (5.0 × 2.3 m each; habituated group, H), while the other group received the concentrate supplement, but not inside the trailers (non-habituated, NH). After 4 weeks of habituation period, goats were subjected to a 10-h transportation stress in four replicates (n = 21 goats/replicate/TRT). Blood samples were collected by a trained individual by jugular venipuncture into vacutainer tubes before loading (Preload), 20 min after loading (0 h), and at 2-h intervals thereafter (Time) for analysis of stress responses. There was a tendency for a TRT effect (p < 0.1) on tyramine and metanephrine concentrations. Phenylethylamine and 5-methoxytryptamine concentrations were significantly greater (p < 0.05) in the H group compared to the NH group. Both dopamine and 5-methoxytryptamine concentrations decreased (p < 0.05) with transportation time; however, TRT × Time interaction effects were not significant. Habituation to trailers may be beneficial in mood and energy stabilization in goats during long-distance transportation.
Collapse
|