1
|
Kohler P, Yates RE, Tomlinson GR, Harwood AD. Evaluating the Effects of Diet on the Sensitivity of Hyalella azteca to an "Eco-friendly" Deicing Agent. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2608-2615. [PMID: 39222015 DOI: 10.1002/etc.5988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Salting of roadways contaminates local waterways via snowmelt and precipitation runoff, eliciting various toxicological impacts on aquatic ecosystems. Recently, "eco-friendly" deicing alternatives have been introduced in hopes of mitigating environmental impacts of deicing agents, while maintaining human safety. These "eco-friendly" alternatives may pose their own set of environmental concerns that require further study. While the potential toxicity of road salts has been evaluated for various aquatic species, the environmental factors that may influence this toxicity are less understood; and for emerging deicing alternatives, there is a lack of literature documenting these potential implications. For aquatic organisms, the highest exposure to road salts may coincide with reduced food availability, namely during the winter months. The present study evaluates the effect of a conditioning diet on the sensitivity of adult Hyalella azteca to an "eco-friendly"-labeled beet deicer (Snow Joe MELT Beet-IT). Various conditioning diets were examined, including TetraMinTM, TetraMin and diatom (Thalassiosira weissflogii) combinations, and TetraMin and conditioned Acer sacharum leaves. For each diet type, 48- and 96-h water-only toxicity bioassays were conducted with adult H. azteca. These results were compared to organisms which experienced a 96-h starvation period prior to exposure and culture organisms. Diet types representing excess quality and quantity of food significantly decreased the toxicity of beet deicer to the organisms. However, starvation likely increases the toxicity of road salts to H. azteca. Therefore, the quantity and quality of food available to H. azteca may influence their sensitivity to deicing agents. Environ Toxicol Chem 2024;43:2608-2615. © 2024 SETAC.
Collapse
Affiliation(s)
- Paige Kohler
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| | - Rebecca E Yates
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| | - Greysen R Tomlinson
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| | - Amanda D Harwood
- Department of Environmental Studies and Biology, Alma College, Alma, Michigan, USA
| |
Collapse
|
2
|
Huber ED, Hintz LL, Wilmoth B, McKenna JR, Hintz WD. Coping with stress: Salt type, concentration, and exposure history limit life history tradeoffs in response to road salt salinization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174998. [PMID: 39053528 DOI: 10.1016/j.scitotenv.2024.174998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Substantial increases in the salinity of freshwater ecosystems has occurred around the globe from causes such as climate change, industrial operations, and the application of road deicing salts. We know very little about how plastic responses in life history traits or rapid evolution of new traits among freshwater organisms could promote stability in ecological communities affected by salinization. We performed a cohort life history analysis from birth to death with 180 individuals of a ubiquitous freshwater zooplankter to understand how life history traits are affected by exposure to two common salt types causing salinization-sodium chloride (NaCl) and calcium chloride (CaCl2)-across two environmentally relevant concentrations. We also tested if a multi-generational exposure history to high salinity altered life-history responses. We tracked and measured lifespan, time to maturation, brood size, brood interval, and body size. We found smaller brood sizes but slightly longer lifespans occurred at a low concentration of NaCl (230 mg Cl-/L). The longer lifespans led to more, albeit smaller broods, which generated a similar lifetime reproductive output compared to the no-salt control populations. At higher concentrations of NaCl and CaCl2, we found lifetime reproductive output was reduced by 23 % to 83 % relative to control populations because no tradeoff among life history traits occurred. In CaCl2, we observed shorter life spans, longer time intervals between smaller broods, and smaller body sizes leading to reduced lifetime reproductive output. We also found that a multi-generational exposure to the salt types did not convey any advantages for lifetime reproductive output. In some cases, the exposure history worsened the life history trait responses suggesting maladaptation. Our findings suggest that life history tradeoffs for freshwater species can occur in response to salinization, but these tradeoffs will largely depend on salt type and concentration, which will have implications for biodiversity and ecological stability.
Collapse
Affiliation(s)
- Eric D Huber
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Leslie L Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Bayley Wilmoth
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Jorden R McKenna
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA.
| |
Collapse
|
3
|
Miess S, Dzialowski AR. Salt Belt Index (SBI): A biotic index for streams within the North American "salt belt," with proposed baseline chloride thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173726. [PMID: 38839006 DOI: 10.1016/j.scitotenv.2024.173726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Road salt (commonly NaCl, CaCl2, and MgCl2) is widely used in the northern United States as a deicing agent for roadways and other byways. Millions of tons of road salt are used annually in the United States, resulting in drastic increases in freshwater salinity. This study aims to determine the chloride optima and tolerance ranges of macroinvertebrates using publicly accessible stream monitoring data from the US EPA. We assigned taxa region-specific tolerance values, which we then used to calculate the Salt Belt Index (SBI). In addition to the SBI, we determined new, region-specific, chronic Cl- thresholds, determined using threshold indicator taxa analysis (TITAN). Using generalized linear models, we found the SBI was highly accurate at estimating chloride concentration (mg/L Cl-) across the salt belt states. Macroinvertebrate community richness exhibited a significant negative relationship with increasing chloride concentrations. Newly proposed chloride thresholds, based on the richness-chloride relationship, were far lower than current thresholds. The SBI was able to differentiate between Low-, Medium-, and High-Impact sites, grouped based on proposed chloride thresholds. Based on our findings, it is clear current salinity thresholds are too high, and management practices should factor in regional variability, taxon-specific physiology, and historical instream chemistry when implementing salinity thresholds.
Collapse
Affiliation(s)
- Sam Miess
- Oklahoma State University Department of Integrative Biology, 501 Life Science West, Oklahoma State University, Stillwater, OK 74079, United States of America.
| | - Andrew R Dzialowski
- Oklahoma State University Department of Integrative Biology, 501 Life Science West, Oklahoma State University, Stillwater, OK 74079, United States of America
| |
Collapse
|
4
|
Lorrain-Soligon L, Bizon T, Robin F, Jankovic M, Brischoux F. Variations of salinity during reproduction and development affect ontogenetic trajectories in a coastal amphibian. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11735-11748. [PMID: 38225486 DOI: 10.1007/s11356-024-31886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Although coastal ecosystems are naturally submitted to temporal variations of salinity, salinization has been increasing over time threatening coastal biodiversity. Species that exploit such habitats can thus be exposed to brackish water at different life stages. However, the impacts of variations of salinity on wildlife remain poorly understood. This is particularly true for coastal amphibians, due to the strong dependency of early life stages (embryos and larvae) on aquatic environments. In order to investigate the effect of salinity during egg laying and embryonic and larval development of coastal amphibians, we used a full-factorial design to expose reproductive adults, eggs, and larvae of coastal spined toads (Bufo spinosus) to fresh (0 g.l-1) or brackish water (4 g.l-1). At egg laying, we evaluated parental investment in reproduction. During embryonic and larval development, we assessed effects on survival, development, and growth. We highlighted strong effects of environmental salinity on reproduction (reduced egg laying time, marginally reduced egg size, and reduced investment in reproduction). Responses to salinity were highly dependent on the developmental stages of exposure (stronger effects when individuals were exposed during embryonic development). These effects carried over when exposure occurred at egg laying or during embryonic development, highlighting the importance of the environmental conditions during early life on ontogenetic trajectories. We also highlighted partial compensation when individuals were transferred back to freshwater. Whether the magnitude of these responses can allow coastal biodiversity to overcome the observed detrimental effects of salinization remain to be assessed.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France.
| | - Timothé Bizon
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France
| | - Frédéric Robin
- LPO France, Fonderies Royales, 17300, Rochefort, France
- Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340, Yves, France
| | - Marko Jankovic
- Réserve naturelle du marais d'Yves LPO, Ferme de la belle espérance, 17340, Yves, France
| | - François Brischoux
- UMR 7372: Centre d'Etudes Biologiques de Chizé (CEBC) - CNRS - La Rochelle Université, 405 route de Prissé la Charrière, 79360, Villiers en Bois, France
| |
Collapse
|
5
|
Huber ED, Wilmoth B, Hintz LL, Horvath AD, McKenna JR, Hintz WD. Freshwater salinization reduces vertical movement rate and abundance of Daphnia: Interactions with predatory stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121767. [PMID: 37146869 DOI: 10.1016/j.envpol.2023.121767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Contaminants in human-dominated landscapes are changing ecological interactions. The global increase in freshwater salinity is likely to change predator-prey interactions due to the potential interactive effects between predatory stress and salt stress. We conducted two experiments to assess the interactions between the non-consumptive effects of predation and elevated salinity on the abundance and vertical movement rate of a common lake zooplankton species (Daphnia mendotae). Our results revealed an antagonism rather than a synergism between predatory stress and salinity on zooplankton abundance. Elevated salinity and predator cues triggered a >50% reduction in abundance at salt concentrations of 230 and 860 mg Cl-/L, two thresholds designed to protect freshwater organisms from chronic and acute effects due to salt pollution. We found a masking effect between salinity and predation on vertical movement rate of zooplankton. Elevated salinity reduced zooplankton vertical movement rate by 22-47%. A longer exposure history only magnified the reduction in vertical movement rate when compared to naïve individuals (no prior salinity exposure). Downward movement rate under the influence of predatory stress in elevated salinity was similar to the control, which may enhance the energetic costs of predator avoidance in salinized ecosystems. Our results suggest antagonistic and masking effects between elevated salinity and predatory stress will have consequences for fish-zooplankton interactions in salinized lakes. Elevated salinity could impose additional energetic constraints on zooplankton predator avoidance behaviors and vertical migration, which may reduce zooplankton population size and community interactions supporting the functioning of lake ecosystems.
Collapse
Affiliation(s)
- Eric D Huber
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Bayley Wilmoth
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Leslie L Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Alexander D Horvath
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Jorden R McKenna
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA.
| |
Collapse
|