1
|
Abbate A, Van Tassell B, Bogin V, Markley R, Pevzner DV, Cremer PC, Meray IA, Privalov DV, Taylor A, Grishin SA, Egorova AN, Ponomar EG, Lavrovsky Y, Samsonov MY. Interleukin-1 Blockade With RPH-104 (Goflikicept) in Patients With ST-Segment Elevation Myocardial Infarction: Secondary End Points From an International, Double-Blind, Randomized, Placebo-Controlled, Phase 2a Study. J Cardiovasc Pharmacol 2024; 84:565-577. [PMID: 39642282 PMCID: PMC11617079 DOI: 10.1097/fjc.0000000000001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024]
Abstract
ABSTRACT In a randomized double-blinded clinical trial of patients with ST segment elevation myocardial infarction (STEMI), goflikicept, an interleukin-1 blocker, significantly reduced systemic inflammation, measured as the area under the curve (AUC) for high-sensitivity C reactive protein at 14 days. We report secondary analyses of biomarkers at 28 days, and cardiac function and clinical end points at 1 year. Patients received a single administration of goflikicept 80 mg (n = 34), goflikicept 160 mg (n = 34), or placebo (n = 34). Both doses of goflikicept significantly reduced the AUC for high-sensitivity C reactive protein at 28 days compared with placebo, without statistically significant differences between the doses. There were no statistically significant differences between groups in the AUC for natriuretic peptides at 28 days. There were no significant differences between placebo, goflikicept 80 mg, and 160 mg groups in deaths (2.9%, 2.9%, and 0%), hospitalization for cardiovascular reasons (9.1%, 5.9%, and 0%), new-onset or progression of heart failure (9.1%, 5.9%, and 5.9%), and new or increased use of loop diuretics (24.2%, 14.7%, and 17.6%), nor in the number of patients with treatment emergent adverse events, with no treatment-related serious adverse events in any group. In conclusion, in patients with STEMI, interleukin-1 blockade with goflikicept 80 mg or 160 mg was well tolerated and associated with significant reduction of systemic inflammation. Further adequately powered studies are warranted to determine whether the reduction in systemic inflammation with goflikicept translates into a clinical benefit in patients with STEMI.
Collapse
Affiliation(s)
| | | | | | | | - Dmitry V. Pevzner
- “National Medical Research Center for Cardiology” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Imad A. Meray
- Peoples' Friendship University of Russia n.a Patrice Lumumba (RUDN University), Moscow, Russia
| | - Dmitry V. Privalov
- “City Clinical Hospital No. 51 of Moscow Healthcare Department”, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
2
|
Mensah‐Bonsu M, Doss C, Gloster C, Muganda P. Gene expression analysis identifies hub genes and pathways distinguishing fatal from survivor outcomes of Ebola virus disease. FASEB Bioadv 2024; 6:298-310. [PMID: 39399477 PMCID: PMC11467745 DOI: 10.1096/fba.2024-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 10/15/2024] Open
Abstract
The Ebola virus poses a severe public health threat, yet understanding factors influencing disease outcomes remains incomplete. Our study aimed to identify critical pathways and hub genes associated with fatal and survivor Ebola disease outcomes. We analyzed differentially expressed hub genes (DEGs) between groups with fatal and survival outcomes, as well as a healthy control group. We conducted additional analysis to determine the functions and pathways associated with these DEGs. We found 13,198 DEGs in the fatal and 12,039 DEGs in the survival group compared to healthy controls, and 1873 DEGs in the acute fatal and survivor groups comparison. Upregulated DEGs in the comparison between the acute fatal and survivor groups were linked to ECM receptor interaction, complement and coagulation cascades, and PI3K-Akt signaling. Upregulated hub genes identified from the acute fatal and survivor comparison (FGB, C1QA, SERPINF2, PLAT, C9, SERPINE1, F3, VWF) were enriched in complement and coagulation cascades; the downregulated hub genes (IL1B, 1L17RE, XCL1, CXCL6, CCL4, CD8A, CD8B, CD3D) were associated with immune cell processes. Hub genes CCL2 and F2 were unique to fatal outcomes, while CXCL1, HIST1H4F, and IL1A were upregulated hub genes unique to survival outcomes compared to healthy controls. Our results demonstrate for the first time the association of EVD outcomes to specific hub genes and their associated pathways and biological processes. The identified hub genes and pathways could help better elucidate Ebola disease pathogenesis and contribute to the development of targeted interventions and personalized treatment for distinct EVD outcomes.
Collapse
Affiliation(s)
- Melvin Mensah‐Bonsu
- Applied Science and TechnologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Christopher Doss
- Department of Electrical and Computer EngineeringNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Clay Gloster
- Department of Computer Systems TechnologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Perpetua Muganda
- Department of BiologyNorth Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
3
|
Chen Y, Zhong A. Causal effects of inflammatory cytokines on cardiovascular diseases: Insights from genetic evidence. Heliyon 2024; 10:e35447. [PMID: 39165962 PMCID: PMC11334864 DOI: 10.1016/j.heliyon.2024.e35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Background The causal relationship between inflammatory cytokines and cardiovascular diseases (CVDs) has not been fully elucidated. Exploring this relationship between circulating inflammatory cytokines and CVDs is crucial for early clinical diagnosis and effective treatment. Methods and Results This study investigated the causal relationships between 41 inflammatory cytokines and six CVDs: heart failure (HF), myocardial infarction (MI), unstable angina pectoris (UAP), stable angina pectoris (SAP), valvular heart disease (VHD), and aortic aneurysm (AA), using the Mendelian Randomization (MR) method. The primary analysis employed the inverse-variance weighted (IVW) method within MR. Heterogeneity and pleiotropy were assessed through MR-Egger regression and the Q statistic. Strong evidence supported the effect of macrophage inflammatory protein-1β (MIP-1β) on MI (OR = 1.062, P < 0.001, FDR <0.001). Suggestive evidence showed that the Beta nerve growth factor increased the risk of MI (OR = 1.145, P = 0.025), but the stem cell factor (SCF) demonstrated a potential protective effect against MI (OR = 0.910, P = 0.04). SCF and hepatocyte growth factor (HGF) exhibited potential protective effects against SAP. No inflammatory cytokine was associated with UAP. Monocyte chemotactic protein-1 was linked to an increased risk of VHD (OR = 1.056, P = 0.049). Higher levels of interleukin-13 (IL-13), interferon gamma-induced protein 10 (IP-10), and growth-regulated oncogene-alpha were associated with increased susceptibility to HF. Elevated basic fibroblast growth factor (bFGF) levels exhibited protective effects against AA (OR = 0.751, P = 0.038). Reverse MR analyses revealed that AA significantly decreased circulating TNF-related apoptosis-inducing ligand (TRAIL) levels (OR = 0.907, P < 0.001, FDR = 0.01). MI significantly increased circulating IL-12-p70 levels (OR = 1.146, P < 0.001, FDR = 0.014). Suggestive evidence indicated the Causal effects of six CVDs on 17 circulating inflammatory cytokines. Conclusions This study clarified the causal relationships between specific inflammatory cytokines and six CVDs, providing novel insights and evidence into the genetic involvement of inflammatory cytokines in CVDs. These inflammatory cytokines may be potential biomarkers for early disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Yuxiu Chen
- Department of Emergency Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
4
|
Huang J, Kuang W, Zhou Z. IL-1 signaling pathway, an important target for inflammation surrounding in myocardial infarction. Inflammopharmacology 2024; 32:2235-2252. [PMID: 38676853 DOI: 10.1007/s10787-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Acute myocardial infarction is an important cardiovascular disease worldwide. Although the mortality rate of myocardial infarction (MI) has improved dramatically in recent years due to timely treatment, adverse remodeling of the left ventricle continues to affect cardiac function. Various immune cells are involved in this process to induce inflammation and amplification. The infiltration of inflammatory cells in the infarcted myocardium is induced by various cytokines and chemokines, and the recruitment of leukocytes further amplifies the inflammatory response. As an increasing number of clinical anti-inflammatory therapies have achieved significant success in recent years, treating myocardial infarction by targeting inflammation may become a novel therapeutic option. In particular, successful clinical trials of canakinumab have demonstrated the important role of the inflammatory factor interleukin-1 (IL-1) in atherosclerosis. Targeted IL-1 therapy may decrease inflammation levels and improve cardiac function in patients after myocardial infarction. This article reviews the complex series of responses after myocardial infarction, including the involvement of inflammatory cells and the role of cytokines and chemokines, focusing on the progression of the IL-1 family in myocardial infarction as well as the performance of current targeted therapy drugs in experiments.
Collapse
Affiliation(s)
- Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center of Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Zuo B, Fan X, Xu D, Zhao L, Zhang B, Li X. Deciphering the mitochondria-inflammation axis: Insights and therapeutic strategies for heart failure. Int Immunopharmacol 2024; 139:112697. [PMID: 39024750 DOI: 10.1016/j.intimp.2024.112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Heart failure (HF) is a clinical syndrome resulting from left ventricular systolic and diastolic dysfunction, leading to significant morbidity and mortality worldwide. Despite improvements in medical treatment, the prognosis of HF patients remains unsatisfactory, with high rehospitalization rates and substantial economic burdens. The heart, a high-energy-consuming organ, relies heavily on ATP production through oxidative phosphorylation in mitochondria. Mitochondrial dysfunction, characterized by impaired energy production, oxidative stress, and disrupted calcium homeostasis, plays a crucial role in HF pathogenesis. Additionally, inflammation contributes significantly to HF progression, with elevated levels of circulating inflammatory cytokines observed in patients. The interplay between mitochondrial dysfunction and inflammation involves shared risk factors, signaling pathways, and potential therapeutic targets. This review comprehensively explores the mechanisms linking mitochondrial dysfunction and inflammation in HF, including the roles of mitochondrial reactive oxygen species (ROS), calcium dysregulation, and mitochondrial DNA (mtDNA) release in triggering inflammatory responses. Understanding these complex interactions offers insights into novel therapeutic approaches for improving mitochondrial function and relieving oxidative stress and inflammation. Targeted interventions that address the mitochondria-inflammation axis hold promise for enhancing cardiac function and outcomes in HF patients.
Collapse
Affiliation(s)
- Baile Zuo
- Molecular Immunology and Immunotherapy Laboratory, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu Fan
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dawei Xu
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Bi Zhang
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China; Department of Clinical Laboratory, Heping Branch, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Muller R, Cauchois R, Lagarde M, Roffino S, Genovesio C, Fernandez S, Hache G, Guillet B, Kara Y, Marlinge M, Lenting P, Poullin P, Dignat-George F, Tellier E, Kaplanski G. Reduction of mortality, cardiac damage, and cerebral damage by IL-1 inhibition in a murine model of TTP. Blood 2024; 143:2791-2803. [PMID: 38598839 DOI: 10.1182/blood.2023021974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/09/2024] [Accepted: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
ABSTRACT Thrombotic thrombocytopenic purpura (TTP), a rare but fatal disease if untreated, is due to alteration in von Willebrand factor cleavage resulting in capillary microthrombus formation and ischemic organ damage. Interleukin-1 (IL-1) has been shown to drive sterile inflammation after ischemia and could play an essential contribution to postischemic organ damage in TTP. Our objectives were to evaluate IL-1 involvement during TTP and to test the efficacy of the recombinant IL-1 receptor antagonist, anakinra, in a murine TTP model. We retrospectively measured plasma IL-1 concentrations in patients with TTP and controls. Patients with TTP exhibited elevated plasma IL-1α and -1β concentrations, which correlated with disease course and survival. In a mouse model of TTP, we administered anakinra (IL-1 inhibitor) or placebo for 5 days and evaluated the efficacy of this treatment. Anakinra significantly reduced mortality of mice (P < .001). Anakinra significantly decreased TTP-induced cardiac damage as assessed by blood troponin concentrations, evaluation of left ventricular function by echocardiography, [18F]fluorodeoxyglucose positron emission tomography of myocardial glucose metabolism, and cardiac histology. Anakinra also significantly reduced brain TTP-induced damage evaluated through blood PS100b concentrations, nuclear imaging, and histology. We finally showed that IL-1α and -1β trigger endothelial degranulation in vitro, leading to the release of von Willebrand factor. In conclusion, anakinra significantly reduced TTP mortality in a preclinical model of the disease by inhibiting both endothelial degranulation and postischemic inflammation, supporting further evaluations in humans.
Collapse
Affiliation(s)
- Romain Muller
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Department of Clinical Immunology and Internal Medicine, CHU Conception, Marseille, France
| | - Raphaël Cauchois
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Department of Clinical Immunology and Internal Medicine, CHU Conception, Marseille, France
- French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Marie Lagarde
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Sandrine Roffino
- Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement, Aix-Marseille University, Marseille, France
| | - Cécile Genovesio
- Faculté de Pharmacie, Aix-Marseille University, Marseille, France
| | - Samantha Fernandez
- Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Guillaume Hache
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Biology Department, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Benjamin Guillet
- Biology Department, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Yéter Kara
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
| | - Marion Marlinge
- Biology Department, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Centre Européen de Recherche en Imagerie Médicale, CHU Timone, Aix-Marseille University, Marseille, France
| | - Peter Lenting
- INSERM, Hémostase Inflammation Thrombose HITh U1176, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Pascale Poullin
- French Reference Center for Thrombotic Microangiopathies, Paris, France
- Assistance Publique des Hôpitaux de Marseille, Service d'Hémaphérése, CHU Conception, Marseille, France
| | - Françoise Dignat-George
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Department of Hematology and Vascular Biology, Assistance Publique des Hôpitaux de Marseille, INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, CHU Conception, Aix-Marseille University, Marseille, France
| | - Edwige Tellier
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- French Reference Center for Thrombotic Microangiopathies, Paris, France
| | - Gilles Kaplanski
- INSERM, Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement, Centre de Recherche en CardioVasculaire et Nutrition, Aix Marseille University, Marseille, France
- Assistance Publique des Hôpitaux de Marseille, Department of Clinical Immunology and Internal Medicine, CHU Conception, Marseille, France
| |
Collapse
|
7
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
8
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
9
|
Peng X, Du J, Wang Y. Metabolic signatures in post-myocardial infarction heart failure, including insights into prediction, intervention, and prognosis. Biomed Pharmacother 2024; 170:116079. [PMID: 38150879 DOI: 10.1016/j.biopha.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Heart failure (HF) is a prevalent long-term complication of myocardial infarction (MI). The incidence of post-MI HF is high, and patients with the condition have a poor prognosis. Accurate identification of individuals at high risk for post-MI HF is crucial for implementation of a protective and ideally personalized strategy to prevent fatal events. Post-MI HF is characterized by adverse cardiac remodeling, which results from metabolic changes in response to long-term ischemia. Moreover, various risk factors, including genetics, diet, and obesity, can influence metabolic pathways in patients. This review focuses on the metabolic signatures of post-MI HF that could serve as non-invasive biomarkers for early identification in high-risk populations. We also explore how metabolism participates in the pathophysiology of post-MI HF. Furthermore, we discuss the potential of metabolites as novel targets for treatment of post-MI HF and as biomarkers for prognostic evaluation. It is expected to provide valuable suggestions for the clinical prevention and treatment of post-MI HF from a metabolic perspective.
Collapse
Affiliation(s)
- Xueyan Peng
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|