1
|
Fallone F, Rebeaud M, Bouche C, Fontaine J, Arellano C, Ducoux-Petit M, Orgerit L, Deudon R, Nicolle R, Franchet C, Estève D, Mouton-Barbosa E, Dauvillier S, Moutahir M, Burlet-Schiltz O, Bouloumié A, Vaysse C, Muller C. Lack of fibro-inflammatory response in human mammary adipose tissue in obesity. Int J Obes (Lond) 2024:10.1038/s41366-024-01705-1. [PMID: 39738492 DOI: 10.1038/s41366-024-01705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Understanding how obesity impacts human mammary adipose tissue (MAT) biology is crucial for deciphering its role in mammary epithelium during both physiological and pathophysiological processes, including breast cancer. Hypertrophic mammary adipocytes and Crown-Like Structures are present in MAT of patients with obesity but whether these changes initiate a fibro-inflammatory response at the tissue level remains insufficiently explored. OBJECTIVE We investigated the markers of adipose tissue dysfunction (immune cell infiltration, secretion pattern and fibrosis) in tumor-free MAT of patients with obesity versus patients who are lean. METHODS Tumor-free MAT were obtained from 96 women with (n = 43) or without (n = 53) obesity who underwent mastectomy for breast cancer risk reduction or treatment. Immune and non-immune cell infiltration were determined using flow cytometry. Bulk transcriptomic was used to characterize the phenotype of CD206+ macrophages whose infiltration is increased in patients with obesity. Conditioned-medium were prepared from MAT to characterize their secretome and dose adipokines and cytokines by ELISA assay. The extra-cellular matrix (ECM) deposition was evaluated by Masson trichrome staining on cross-stained sections, 3D imaging of red picrosirius-stained tissues and measure of hydroxyproline content. RESULTS We observed an increase of CD206+/HLA-DR+ macrophages in the stromal vascular fraction of MAT from patients with obesity compared to patients who are lean. Other immune cell infiltration and endothelial or adipose progenitor cell numbers were similar between groups. Bulk transcriptomics on CD206+ macrophages revealed a significant decrease in ECM component expression and processing in obesity. In addition, no heightened secretion of pro-inflammatory cytokines, TGF-β1 or MCP-1 was observed in the samples from patients with obesity. ECM characterization revealed an absence of fibrosis, with MAT of patients with obesity showing even a slightly reduced collagen secretion and deposition compared with their lean counterparts. CONCLUSIONS Obesity is not associated with inflammation nor fibrosis in MAT, highlighting its unique behavior.
Collapse
Affiliation(s)
- Frédérique Fallone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France.
| | - Marie Rebeaud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Caroline Bouche
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Carlo Arellano
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Manuelle Ducoux-Petit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Lucyle Orgerit
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Rémi Deudon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
| | - Camille Franchet
- Département d'Anatomo-Pathologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - David Estève
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Stéphanie Dauvillier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Mohamed Moutahir
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Anne Bouloumié
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Charlotte Vaysse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France
- Département de Chirurgie Gynécologique Oncologique, CHU-Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
2
|
Roy R, Man E, Aldakhlallah R, Gonzalez K, Merritt L, Daisy C, Lombardo M, Yordanova V, Sun L, Isaac B, Rockowitz S, Lotz M, Pories S, Moses MA. Mammary adipocytes promote breast tumor cell invasion and angiogenesis in the context of menopause and obesity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167325. [PMID: 38925485 DOI: 10.1016/j.bbadis.2024.167325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The mechanism(s) underlying obesity-related postmenopausal (PM) breast cancer (BC) are not clearly understood. We hypothesized that the increased local presence of 'obese' mammary adipocytes within the BC microenvironment promotes the acquisition of an invasive and angiogenic BC cell phenotype and accelerates tumor proliferation and progression. BC cells, treated with primary mammary adipocyte secretome from premenopausal (Pre-M) and PM obese women (ObAdCM; obese adipocyte conditioned-media) upregulated the expression of several pro-tumorigenic factors including VEGF, lipocalin-2 and IL-6. Both Pre-M and PM ObAdCM stimulated endothelial cell recruitment and proliferation and significantly stimulated BC cell proliferation, migration and invasion. IL-6 and LCN2 induced STAT3/Akt signaling in BC cells and STAT3 inhibition abrogated the ObAdCM-stimulated BC cell proliferation and migration. Expression of proangiogenic regulators including VEGF, NRP1, NRP2, IL8RB, TGFβ2, and TSP-1 were found to be differentially regulated in mammary adipocytes from obese PM women. Comparative RNAseq indicated an upregulation of PI3K/Akt signaling, ECM-receptor interactions and lipid/fatty acid metabolism in PM versus Pre-M mammary adipocytes. Our results demonstrate that irrespective of menopausal status, cross-talk between obese mammary adipocytes and BC cells promotes tumor aggressiveness and suggest that targeting the LCN2/IL-6/STAT3 signaling axis may be a useful strategy in obesity-driven breast tumorigenesis.
Collapse
Affiliation(s)
- Roopali Roy
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| | - Emily Man
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Rama Aldakhlallah
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | | | - Lauren Merritt
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra Daisy
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Michael Lombardo
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | | | - Liang Sun
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Biju Isaac
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Margaret Lotz
- Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA, USA
| | - Susan Pories
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA; Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Beeghly GF, Deng J, Fischbach C. Protocol to fabricate elastomer microwells for three-dimensional culture of primary adipocytes. STAR Protoc 2024; 5:103264. [PMID: 39146192 PMCID: PMC11367524 DOI: 10.1016/j.xpro.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Our understanding of how adipocytes influence metabolic signaling, immune function, and cancer progression remains limited as the culture of primary adipocytes is challenging. Here, we present a protocol to fabricate elastomer microwells for three-dimensional culture of collagen-embedded adipocytes. We describe steps to cure and functionalize elastomer microwells and to isolate and embed primary adipocytes. We then detail how to culture and analyze adipocyte-collagen gels. This protocol provides broad applications to improve our understanding of adipocyte biology in health and disease.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Jenny Deng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Kes MMG, Berkers CR, Drost J. Bridging the gap: advancing cancer cell culture to reveal key metabolic targets. Front Oncol 2024; 14:1480613. [PMID: 39355125 PMCID: PMC11442172 DOI: 10.3389/fonc.2024.1480613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolic rewiring is a defining characteristic of cancer cells, driving their ability to proliferate. Leveraging these metabolic vulnerabilities for therapeutic purposes has a long and impactful history, with the advent of antimetabolites marking a significant breakthrough in cancer treatment. Despite this, only a few in vitro metabolic discoveries have been successfully translated into effective clinical therapies. This limited translatability is partially due to the use of simplistic in vitro models that do not accurately reflect the tumor microenvironment. This Review examines the effects of current cell culture practices on cancer cell metabolism and highlights recent advancements in establishing more physiologically relevant in vitro culture conditions and technologies, such as organoids. Applying these improvements may bridge the gap between in vitro and in vivo findings, facilitating the development of innovative metabolic therapies for cancer.
Collapse
Affiliation(s)
- Marjolein M G Kes
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Celia R Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
5
|
Habanjar O, Nehme R, Goncalves-Mendes N, Cueff G, Blavignac C, Aoun J, Decombat C, Auxenfans C, Diab-Assaf M, Caldefie-Chézet F, Delort L. The obese inflammatory microenvironment may promote breast DCIS progression. Front Immunol 2024; 15:1384354. [PMID: 39072314 PMCID: PMC11272476 DOI: 10.3389/fimmu.2024.1384354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1β, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-β secretion. Discussion Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Gwendal Cueff
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - Jessy Aoun
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Céline Auxenfans
- Banque de tissus et de cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
6
|
Rebeaud M, Lacombe M, Fallone F, Milhas D, Roumiguié M, Vaysse C, Attané C, Muller C. Specificities of mammary and periprostatic adipose tissues: A perspective from cancer research. ANNALES D'ENDOCRINOLOGIE 2024; 85:220-225. [PMID: 38871505 DOI: 10.1016/j.ando.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In addition to the major subcutaneous and visceral adipose tissues (AT), other adipose depots are dispersed throughout the body and are found in close interaction with proximal organs such as mammary and periprostatic AT (MAT and PPAT respectively). These ATs have an effect on proximal organ function during physiological processes and diseases such as cancer. We highlighted here some of their most distinctive features in terms of tissular organization and responses to external stimuli and discussed how obesity affects them based on our current knowledge.
Collapse
Affiliation(s)
- Marie Rebeaud
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Mathilde Lacombe
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Frédérique Fallone
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Delphine Milhas
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Mathieu Roumiguié
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France; Département d'urologie, CHU de Toulouse, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - Charlotte Vaysse
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France; Département de chirurgie gynécologique-oncologique, institut universitaire du cancer de Toulouse-Oncopole, CHU de Toulouse, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex 9, France
| | - Camille Attané
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France
| | - Catherine Muller
- UMR 5089, CNRS, équipe labélisée ligue nationale contre le cancer, institut de pharmacologie et de biologie structurale, université de Toulouse, 205, route de Narbonne, BP 64182, 31077 Toulouse, France.
| |
Collapse
|
7
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Mun S, Lee HJ, Kim P. Rebuilding the microenvironment of primary tumors in humans: a focus on stroma. Exp Mol Med 2024; 56:527-548. [PMID: 38443595 PMCID: PMC10984944 DOI: 10.1038/s12276-024-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Conventional tumor models have critical shortcomings in that they lack the complexity of the human stroma. The heterogeneous stroma is a central compartment of the tumor microenvironment (TME) that must be addressed in cancer research and precision medicine. To fully model the human tumor stroma, the deconstruction and reconstruction of tumor tissues have been suggested as new approaches for in vitro tumor modeling. In this review, we summarize the heterogeneity of tumor-associated stromal cells and general deconstruction approaches used to isolate patient-specific stromal cells from tumor tissue; we also address the effect of the deconstruction procedure on the characteristics of primary cells. Finally, perspectives on the future of reconstructed tumor models are discussed, with an emphasis on the essential prerequisites for developing authentic humanized tumor models.
Collapse
Affiliation(s)
- Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea.
- Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|
9
|
Hamel KM, Frazier TP, Williams C, Duplessis T, Rowan BG, Gimble JM, Sanchez CG. Adipose Tissue in Breast Cancer Microphysiological Models to Capture Human Diversity in Preclinical Models. Int J Mol Sci 2024; 25:2728. [PMID: 38473978 PMCID: PMC10931959 DOI: 10.3390/ijms25052728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.
Collapse
Affiliation(s)
- Katie M. Hamel
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Trivia P. Frazier
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Christopher Williams
- Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Jeffrey M. Gimble
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Cecilia G. Sanchez
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| |
Collapse
|
10
|
Blyth RRR, Birts CN, Beers SA. The role of three-dimensional in vitro models in modelling the inflammatory microenvironment associated with obesity in breast cancer. Breast Cancer Res 2023; 25:104. [PMID: 37697381 PMCID: PMC10494415 DOI: 10.1186/s13058-023-01700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Obesity is an established risk factor for breast cancer in postmenopausal women. However, the underlying biological mechanisms of how obesity contributes to breast cancer remains unclear. The inflammatory adipose microenvironment is central to breast cancer progression and has been shown to favour breast cancer cell growth and to reduce efficacy of anti-cancer treatments. Thus, it is imperative to further our understanding of the inflammatory microenvironment seen in breast cancer patients with obesity. Three-dimensional (3D) in vitro models offer a key tool in increasing our understanding of such complex interactions within the adipose microenvironment. This review discusses some of the approaches utilised to recapitulate the breast tumour microenvironment, including various co-culture and 3D in vitro models. We consider how these model systems contribute to the understanding of breast cancer research, with particular focus on the inflammatory tumour microenvironment. This review aims to provide insight and prospective future directions on the utility of such model systems for breast cancer research.
Collapse
Affiliation(s)
- Rhianna Rachael Romany Blyth
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Charles N Birts
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|