1
|
Barzoki AK, Shamloo A. Streamline-directed tunable deterministic lateral displacement chip: A numerical approach to efficient particle separation. J Chromatogr A 2024; 1736:465397. [PMID: 39342730 DOI: 10.1016/j.chroma.2024.465397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
In conventional Deterministic Lateral Displacement (DLD), the migration behavior of a particle of specific size is determined by the critical diameter (Dc), which is predefined by the device's geometry. In contrast to the typical approach that alters the angle between the pillar array and fluid streamlines by modifying the geometrical parameters, this study introduces a novel perspective that focuses on changing the direction of the streamlines. The proposed technique offers a tunable DLD chip featuring a straightforward design that allows for easy fabrication. This chip features one completely horizontal pillar array with two bypass channels on the top and bottom of the DLD chamber. The width of these bypass channels changes linearly from their inlet to their outlet. Two design configurations are suggested for this chip, characterized by either parallel or unparallel slopes of the bypass channels. This chip is capable of generating a wide range of Dc values by manipulating two distinct control parameters. The first control parameter involves adjusting the flow rates in the two bypass channels. The second control parameter entails controlling the slopes of these bypass channels. Both of these parameters influence the direction of particle-carrying streamlines resulting in a change in the path-line of the particles. By changing the angle of streamlines with pillar array, the Dc can be tuned. Prior to determining the Dc for each case, an initial estimation was made using a Python script that utilized the streamline coordinates. Subsequently, through FEM modeling of the particle trajectories, precise Dc values were ascertained and compared with the estimated values, revealing minimal disparities. By adjusting the flow rate and slope of the bypass channels, maximum Dc ranges of 4-10 μm and 8-13 μm can be achieved, respectively. This innovative chip enables the attainment of Dc values spanning from 0.5 to 14 μm.
Collapse
Affiliation(s)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Rodríguez CF, Guzmán-Sastoque P, Gantiva-Diaz M, Gómez SC, Quezada V, Muñoz-Camargo C, Osma JF, Reyes LH, Cruz JC. Low-cost inertial microfluidic device for microparticle separation: A laser-Ablated PMMA lab-on-a-chip approach without a cleanroom. HARDWAREX 2023; 16:e00493. [PMID: 38045919 PMCID: PMC10689937 DOI: 10.1016/j.ohx.2023.e00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/08/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Although microparticles are frequently used in chemistry and biology, their effectiveness largely depends on the homogeneity of their particle size distribution. Microfluidic devices to separate and purify particles based on their size have been developed, but many require expensive cleanroom manufacturing processes. A cost-effective, passive microfluidic separator is presented, capable of efficiently sorting and purifying particles spanning the size range of 15 µm to 40 µm. Fabricated from Polymethyl Methacrylate (PMMA) substrates using laser ablation, this device circumvents the need for cleanroom facilities. Prior to fabrication, rigorous optimization of the device's design was carried out through computational simulations conducted in COMSOL Multiphysics. To gauge its performance, chitosan microparticles were employed as a test case. The results were notably promising, achieving a precision of 96.14 %. This quantitative metric underscores the device's precision and effectiveness in size-based particle separation. This low-cost and accessible microfluidic separator offers a pragmatic solution for laboratories and researchers seeking precise control over particle sizes, without the constraints of expensive manufacturing environments. This innovation not only mitigates the limitations tied to traditional cleanroom-based fabrication but also widens the horizons for various applications within the realms of chemistry and biology.
Collapse
Affiliation(s)
- Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Paula Guzmán-Sastoque
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Mónica Gantiva-Diaz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| |
Collapse
|