1
|
Ren LL, Song YR, Song ZC, Yang H, Zhang Q, Ji MM, Xiao N, Wen M, Wang JH. Enhancing antitumor activity of herceptin in HER2-positive breast cancer cells: a novel DNMT-1 inhibitor approach. Discov Oncol 2024; 15:640. [PMID: 39527385 PMCID: PMC11555163 DOI: 10.1007/s12672-024-01508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
HER2 antagonists remain the cornerstone of therapy for patients with HER2-positive breast cancer. This study introduces a novel small-molecule inhibitor of DNA methyltransferase 1 (DNMT-1), referred to as DI-1, designed to synergize with HER2 antagonists in treating HER2-positive breast cancer cells. Clinical data reveal a negative correlation between DNMT-1 expression and PTEN levels, and a positive correlation with the methylation rates of PTEN's promoter. In experiments with SKBR3 and BT474 cells, DI-1 effectively reduced the methylation of PTEN's promoter region, thereby upregulating PTEN expression. This upregulation, in turn, enhanced the cells' sensitivity to HER2 antagonists, indicating that DI-1's mechanism involves inhibiting DNMT-1's recruitment to PTEN's promoter region. Consequently, by increasing PTEN expression, DI-1 amplifies the sensitivity of HER2-positive breast cancer cells to treatment, suggesting its potential as a promising therapeutic strategy in this context.
Collapse
Affiliation(s)
- Li-Li Ren
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Yan-Ru Song
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Zhen-Chuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Hua Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China.
| | - Qian Zhang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Meng-Meng Ji
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Na Xiao
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Ming Wen
- Department of Surgery, the Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Ji-Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
2
|
Al-Dulaimi S, Matta S, Slijepcevic P, Roberts T. 5-aza-2'-deoxycytidine induces telomere dysfunction in breast cancer cells. Biomed Pharmacother 2024; 178:117173. [PMID: 39059352 DOI: 10.1016/j.biopha.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
AIMS Azacitidine, a drug that epigenetically modifies DNA, is widely used to treat haematological malignancies. However, at low doses, it demethylates DNA, and as a result, can alter gene expression. In our previous publication, we showed that low doses of azacitidine induce telomere length elongation in breast cancer cells. In this study, we aim to identify the mechanisms which lead to telomere length increases. METHODS Breast cancer cell lines representing different molecular sub-types were exposed to 5-aza-2'-deoxycytidine (5-aza) in 2 and 3D cultures, followed by DNA, RNA, and protein extractions. Samples were then analysed for telomere length, DNA damage, telomerase, and ALT activity. RESULTS We show that treatment of the cell lines with 5-aza for 72 h induced DNA damage at the telomeres and increased ALT activity 3-fold. We also identified a gene, POLD3, which may be involved in the ALT activity seen after treatment. CONCLUSION Our results indicate that while 5-aza is a useful drug for treating haematological cancers, surviving cancer cells that have been exposed to lower doses of the drug may activate mechanisms such as ALT. This could lead to cancer cell survival and possible resistance to 5-aza clinically.
Collapse
Affiliation(s)
- Sarah Al-Dulaimi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Sheila Matta
- Royal Brompton Hospital, Respiratory Clinical Research Facility, Fulham Road, London SW3 6HP, UK
| | - Predrag Slijepcevic
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Terry Roberts
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
3
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Cazzato G, Sgarro N, Casatta N, Lupo C, Ingravallo G, Ribatti D. Epigenetics and Control of Tumor Angiogenesis in Melanoma: An Update with Therapeutic Implications. Cancers (Basel) 2024; 16:2843. [PMID: 39199614 PMCID: PMC11352434 DOI: 10.3390/cancers16162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process in the progression and metastasis of melanoma. Recent research has highlighted the significant role of epigenetic modifications in regulating angiogenesis. This review comprehensively examines the current understanding of how epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, influence angiogenic pathways in melanoma. DNA methylation, a key epigenetic modification, can silence angiogenesis inhibitors such as thrombospondin-1 and TIMP3 while promoting pro-angiogenic factors like vascular endothelial growth factor (VEGF). Histone modifications, including methylation and acetylation, also play a pivotal role in regulating the expression of angiogenesis-related genes. For instance, the acetylation of histones H3 and H4 is associated with the upregulation of pro-angiogenic genes, whereas histone methylation patterns can either enhance or repress angiogenic signals, depending on the specific histone mark and context. Non-coding RNAs, particularly microRNAs (miRNAs) further modulate angiogenesis. miRNAs, such as miR-210, have been identified as key regulators, with miR-9 promoting angiogenesis by targeting E-cadherin and enhancing the expression of VEGF. This review also discusses the therapeutic potential of targeting epigenetic modifications to inhibit angiogenesis in melanoma. Epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., 5-azacytidine) and histone deacetylase inhibitors (e.g., Vorinostat), have shown promise in preclinical models by reactivating angiogenesis inhibitors and downregulating pro-angiogenic factors. Moreover, the modulation of miRNAs and lncRNAs presents a novel approach for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nicoletta Sgarro
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nadia Casatta
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
| | - Carmelo Lupo
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
- Engineering and Applied Science Department, University of Bergamo, 24127 Bergamo, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Domenico Ribatti
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
5
|
Laranjeira ABA, Nguyen D, Pelosof LC, Doroshow JH, Yang SX. Upregulation of TET2 and Resistance to DNA Methyltransferase (DNMT) Inhibitors in DNMT1-Deleted Cancer Cells. Diseases 2024; 12:163. [PMID: 39057134 PMCID: PMC11276550 DOI: 10.3390/diseases12070163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT inhibitor treatment is unclear in human malignancies. METHODS Human colorectal carcinoma HCT116 cells (DNMT+/+) and their isogenic DNMT1 knockout (DNMT1-/-) counterpart were treated with DNMT inhibitors. Expression of TET2 and tumor suppressor (p16ink4A and p15ink4B) proteins were examined by Western blot. Apoptosis and CDKN2A promoter demethylation following drug treatment were detected by Annexin-V apoptosis assay and methylation-specific PCR. RESULTS TET2 expression was robustly increased in DNMT1-/- cells by 0.5 µM and 5 µM decitabine and azacitidine treatment. Augmentation of TET2 expression was accompanied by re-expression of p16ink4A and p15ink4B proteins and CDKN2A promoter demethylation. TET2 upregulation and tumor suppressor re-expression were associated with resistance conferred by DNMT1 deletion. Treatment with 5-aza-4'-thio-2'-deoxycytidine at a low 0.5 µM dose only upregulated TET2 and reduced CDKN2A promoter methylation, and re-expression of p16ink4A in DNMT1-/- cells. DNMT inhibitors showed minimal effects on TET2 upregulation and re-expression of tumor suppressor proteins in cells with intact DNMT1. CONCLUSIONS DNMT1 gene deletion made cancer cells prone to TET2 upregulation and activation of tumor suppressor expression upon DNMT inhibitor challenge. TET2 augmentation is concomitant with resistance to DNMT inhibitors in a DNMT1-deleted state.
Collapse
Affiliation(s)
| | | | | | | | - Sherry X. Yang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.B.A.L.); (D.N.); (L.C.P.); (J.H.D.)
| |
Collapse
|
6
|
Ertl I, Shariat SF, Berger W, Englinger B. Preclinical models for bladder cancer therapy research. Curr Opin Urol 2024; 34:244-250. [PMID: 38630912 PMCID: PMC11155278 DOI: 10.1097/mou.0000000000001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
PURPOSE OF REVIEW Bladder cancer (BC) is a highly heterogenous disease comprising tumours of various molecular subtypes and histologic variants. This heterogeneity represents a major challenge for the development of novel therapeutics. Preclinical models that closely mimic in vivo tumours and reflect their diverse biology are indispensable for the identification of therapies with specific activity in various BC subtypes. In this review, we summarize efforts and progress made in this context during the last 24 months. RECENT FINDINGS In recent years, one main focus was laid on the development of patient-derived BC models. Patient-derived organoids (PDOs) and patient-derived xenografts (PDXs) were demonstrated to widely recapitulate the molecular and histopathological characteristics, as well as the drug response profiles of the corresponding tumours of origin. These models, thus, represent promising tools for drug development and personalized medicine. Besides PDXs, syngenic in vivo models are of growing importance. Since these models are generated using immunocompetent hosts, they can, amongst others, be used to develop novel immunotherapeutics and to evaluate the impact of the immune system on drug response and resistance. SUMMARY In the past two years, various in vivo and in vitro models closely recapitulating the biology and heterogeneity of human bladder tumours were developed.
Collapse
Affiliation(s)
- Iris Ertl
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F. Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Weill Cornell Medical College, New York, New York
- Department of Urology, University of Texas Southwestern, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Research Center for Evidence Medicine, Urology Department Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Bernard Englinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Qin X, Lu J, Wu P, Zhang C, Shi L, Zhu P. Charting epimutation dynamics in human hematopoietic differentiation. BLOOD SCIENCE 2024; 6:e00197. [PMID: 38872911 PMCID: PMC11175913 DOI: 10.1097/bs9.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
DNA methylation plays a critical role in hematopoietic differentiation. Epimutation is a stochastic variation in DNA methylation that induces epigenetic heterogeneity. However, the effects of epimutations on normal hematopoiesis and hematopoietic diseases remain unclear. In this study, we developed a Julia package called EpiMut that enabled rapid and accurate quantification of epimutations. EpiMut was used to evaluate and provide an epimutation landscape in steady-state hematopoietic differentiation involving 13 types of blood cells ranging from hematopoietic stem/progenitor cells to mature cells. We showed that substantial genomic regions exhibited epigenetic variations rather than significant differences in DNA methylation levels between the myeloid and lymphoid lineages. Stepwise dynamics of epimutations were observed during the differentiation of each lineage. Importantly, we found that epimutation significantly enriched signals associated with lineage differentiation. Furthermore, epimutations in hematopoietic stem cells (HSCs) derived from various sources and acute myeloid leukemia were related to the function of HSCs and malignant cell disorders. Taken together, our study comprehensively documented an epimutation map and uncovered its important roles in human hematopoiesis, thereby offering insights into hematopoietic regulation.
Collapse
Affiliation(s)
- Xiaohuan Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiayi Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lei Shi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
8
|
Quan S, Huang H. Epigenetic contribution to cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:1-25. [PMID: 39179345 DOI: 10.1016/bs.ircmb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Epigenetics has transformed our understanding of cancer by revealing how changes in gene activity, which do not alter the DNA itself, can initiate and progress the disease. These changes include adjustments in DNA methylation, histone configuration, and non-coding RNA activity. For instance, DNA methylation can inactivate genes that typically protect against cancer, leading to broader genomic instability. Histone modifications can alter how tightly DNA is wound, influencing which genes are active or silenced; while non-coding RNAs can interfere with the messages that direct protein production, impacting cancer-related processes. Unlike genetic mutations, which are permanent and irreversible, epigenetic changes provide a malleable target for therapeutic intervention, allowing potentially reversible adjustments to gene expression patterns. This flexibility is essential in the complex landscape of cancer where static genetic solutions may be insufficient. Additionally, epigenetics bridges the gap between genetic predispositions and environmental influences on cancer, offering a comprehensive framework for understanding how lifestyle factors and external exposures impact cancer risk and progression. The integration of epigenetics into cancer research not only enhances our understanding of the disease but also opens innovative avenues for intervention that were previously unexplored in traditional genetic-focused studies. Technologies like advanced sequencing and precise epigenetic modification are paving the way for early cancer detection and more personalized treatment approaches, highlighting the critical role of epigenetics in modern cancer care.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Huang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
9
|
Sharma A, Chhipa AS, Verma S, Parikh P, Patel S. Olsalazine pretreatment augments chemosensitivity of gemcitabine in hepatocellular carcinoma. J Biochem Mol Toxicol 2024; 38:e23737. [PMID: 38798245 DOI: 10.1002/jbt.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Recently, olsalazine a DNA hypomethylating agent was found to inhibit the growth of breast cancer cells. The present study was carried out to evaluate the effects of olsalazine pretreatment in the potentiation of chemosensitivity of gemcitabine for the treatment of hepatocellular carcinoma (HCC). In silico molecular docking was performed to analyze the interaction of olsalazine and gemcitabine with DNMT1 and DNA, respectively, using the AutoDock tools 1.5.6. Cytotoxicity of olsalazine, gemcitabine, and combination were measured on human HePG2 cells using MTT assay. Antiproliferative effects were assessed using animal model of N-nitrosodiethylamine and carbon tetrachloride-induced HCC. Treatment was initiated from 8th week of induction to 11th week and change in body weight, liver weight, and survival rate were measured. Following treatment, blood samples were collected for estimation serum biochemistry. Blood serum was used for the estimation of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), C-reactive protein [CRP], lactate dehydrogenase (LDH), and P53 levels. Oxidative stress markers were measured in liver tissue homogenates. Histopathology and immunohistochemistry (IHC) were performed on liver sections to detect the morphological changes and P53 expression. Docking analysis revealed the interactions between olsalazine and DNMT1 with a binding energy score of -5.34 and gemcitabine and DNA with a binding energy score of -5.93. Olsalazine pretreatment potentiated the antiproliferative effect of gemcitabine in cell line study. In the group receiving olsalazine pretreatment showed significant reductions in relative liver weight and improved survival rate of gemcitabine treatment group. Serum biochemical markers: serum glutamate pyruvate transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, and bilirubin revealed improved liver functions. Olsalazine pretreatment also reduced the levels of inflammatory markers like CRP, LDH, TNF-α, and IL-6 and oxidative stress markers dose dependently. Histopathology and IHC showed improved liver morphology with potentiated the induction of P53 upon olsalazine pretreatment in combination with gemcitabine. In conclusion, sequential combination of olsalazine and gemcitabine improved the treatment outcomes during the progression of HCC.
Collapse
Affiliation(s)
- Ayush Sharma
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Srashti Verma
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
11
|
Falckenhayn C, Bienkowska A, Söhle J, Wegner K, Raddatz G, Kristof B, Kuck D, Siegner R, Kaufmann R, Korn J, Baumann S, Lange D, Schepky A, Völzke H, Kaderali L, Winnefeld M, Lyko F, Grönniger E. Identification of dihydromyricetin as a natural DNA methylation inhibitor with rejuvenating activity in human skin. FRONTIERS IN AGING 2024; 4:1258184. [PMID: 38500495 PMCID: PMC10944877 DOI: 10.3389/fragi.2023.1258184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 03/20/2024]
Abstract
Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin.
Collapse
Affiliation(s)
| | - Agata Bienkowska
- Beiersdorf AG, Research and Development, Hamburg, Germany
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jörn Söhle
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Katrin Wegner
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Guenter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Boris Kristof
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Dirk Kuck
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ralf Siegner
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Ronny Kaufmann
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Julia Korn
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Sascha Baumann
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Daniela Lange
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | | | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Marc Winnefeld
- Beiersdorf AG, Research and Development, Hamburg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Elke Grönniger
- Beiersdorf AG, Research and Development, Hamburg, Germany
| |
Collapse
|
12
|
Kaleem M, Kayali A, Sheikh RA, Kuerban A, Hassan MA, Almalki NAR, Al-Abbasi FA, Anwar F, Omran Z, Alhosin M. In Vitro and In Vivo Preventive Effects of Thymoquinone against Breast Cancer: Role of DNMT1. Molecules 2024; 29:434. [PMID: 38257347 PMCID: PMC10819256 DOI: 10.3390/molecules29020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women and is a major cause of female cancer-related deaths. BC is a multifactorial disease caused by the dysregulation of many genes, raising the need to find novel drugs that function by targeting several signaling pathways. The antitumoral drug thymoquinone (TQ), found in black seed oil, has multitargeting properties against several signaling pathways. This study evaluated the inhibitory effects of TQ on the MCF7 and T47D human breast cancer cell lines and its antitumor activity against BC induced by a single oral dose (65 mg/kg) of 7,12-dimethylbenzanthracene (DMBA) in female rats. The therapeutic activity was evaluated in DMBA-treated rats who received oral TQ (50 mg/kg) three times weekly. TQ-treated MCF7 and T47D cells showed concentration-dependent inhibition of cell proliferation and induction of apoptosis. TQ also decreased the expression of DNA methyltransferase 1 (DNMT1) in both cancer cell types. In DMBA-treated animals, TQ inhibited the number of liver and kidney metastases. These effects were associated with a reduction in DNMT1 mRNA expression. These results indicate that TQ has protective effects against breast carcinogens through epigenetic mechanisms involving DNMT1 inhibition.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Asaad Kayali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Ryan A. Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
| | - Mohammed A. Hassan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Department of Pharmacy, College of Medicine and Health Sciences, Hadhramout University, Mukalla P.O. Box 8892, Yemen
| | - Naif Abdullah R. Almalki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
| | - Ziad Omran
- King Abdullah International Medical Research Center, King Saud Bin Abdelaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
- King Abdulaziz Medical City, Ministry of National Guards-Health Affairs, Jeddah 21423, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.K.); (A.K.); (R.A.S.); (A.K.); (M.A.H.); (N.A.R.A.); (F.A.A.-A.); (F.A.)
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Ahmadpour F, Igder S, Eftekhari Moghadam AR, Moradipoodeh B, Sepahdar A, Mokarram P, Fallahi J, Mohammadzadeh G. Metformin as a Potential Therapeutic Agent in Breast Cancer: Targeting miR-125a Methylation and Epigenetic Regulation. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:272-285. [PMID: 39493516 PMCID: PMC11530948 DOI: 10.22088/ijmcm.bums.13.3.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer, characterized by genetic diversity and molecular subtypes, presents significant treatment challenges, especially in human epidermal growth factor receptor type 2 (HER2)-positive cases, which are associated with poor prognosis. Metformin, widely known for its antidiabetic effects, has emerged as a promising candidate for cancer therapy. This study investigates the effect of metformin on miR-125a promoter methylation and its subsequent impact on the HER2 signaling pathway in HER2-positive breast cancer cells (SK-BR3). SK-BR3 cells were cultured and treated with various concentrations of metformin to assess its effects on cell viability, DNA methylation, HER2, and DNA Methyltransferase 1 (DNMT1) expression. Molecular analyses focus on the miR-125a signaling pathway modulation, DNA methylation, mRNA expression of DNMT1, and protein level of HER2. Research showed a dose-dependent reduction in cell viability, with IC50 values from 65 mM at 48 hours to 35 mM at 72 hours. Metformin treatment led to demethylation of the miR-125a promoter, which increased miR-125a expression and subsequently reduced HER2 levels. This suggests that metformin exerts its anticancer effects partly by regulation of the miR-125a-HER2 axis. Additionally, metformin inhibited vimentin expression, indicating its potential to interfere with epithelial-mesenchymal transition (EMT) processes. Metformin may serve as a targeted therapeutic agent in HER2-positive breast cancer by modulating the miR-125a-HER2 axis and influencing on the epigenetic and EMT regulation. Further research is warranted to elucidate the therapeutic potential of metformin through these mechanisms.
Collapse
Affiliation(s)
- Fatemeh Ahmadpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences. Khorramabad. Iran.
- The first two authors contributed equally to this work.
| | - Somayeh Igder
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- The first two authors contributed equally to this work.
| | - Ali Reza Eftekhari Moghadam
- Department of Anatomical Science, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Bahman Moradipoodeh
- Department of Laboratory Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | - Asma Sepahdar
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences. Khorramabad. Iran.
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghorban Mohammadzadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Subaramaniyam U, Ramalingam D, Balan R, Paital B, Sar P, Ramalingam N. Annonaceous acetogenins as promising DNA methylation inhibitors to prevent and treat leukemogenesis - an in silico approach. J Biomol Struct Dyn 2023:1-14. [PMID: 38149859 DOI: 10.1080/07391102.2023.2297010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Leukemia is a haematological malignancy affecting blood and bone marrow, ranking 10th among the other common cancers. DNA methylation is an epigenetic dysregulation that plays a critical role in leukemogenesis. DNA methyltransferases (DNMTs) such as DNMT1, DNMT3A and DNMT3B are the key enzymes catalysing DNA methylation. Inhibition of DNMT1 with secondary metabolites from medicinal plants helps reverse DNA methylation. The present study focuses on inhibiting DNMT1 protein (PDB ID: 3PTA) with annonaceous acetogenins through in-silico studies. The docking and molecular dynamic (MD) simulation study was carried out using Schrödinger Maestro and Desmond, respectively. These compounds' drug likeliness, ADMET properties and bioactivity scores were analysed. About 76 different acetogenins were chosen for this study, among which 17 showed the highest binding energy in the range of -8.312 to -10.266 kcal/mol. The compounds with the highest negative binding energy were found to be annohexocin (-10.266 kcal/mol), isoannonacinone (-10.209 kcal/mol) and annonacin (-9.839 kcal/mol). MD simulation results reveal that annonacin remains stable throughout the simulation time of 100 ns and also binds to the catalytic domain of DNMT1 protein. From the above results, it can be concluded that annonacin has the potential to inhibit the DNA methylation process and prevent leukemogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Pranati Sar
- Biotechnology Department, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
15
|
Bi X, Zhang M, Zhou J, Yan X, Cheng L, Luo L, Huang C, Yin Z. Phosphorylated Hsp27 promotes adriamycin resistance in breast cancer cells through regulating dual phosphorylation of c-Myc. Cell Signal 2023; 112:110913. [PMID: 37797796 DOI: 10.1016/j.cellsig.2023.110913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Chemotherapy resistance of breast cancer cells is one of the major factors affecting patient survival rate. Heat shock protein 27 (Hsp27) is a member of the small heat shock protein family that has been reported to be associated with chemotherapy resistance in tumor cells, but the exact mechanism is not fully understood. Here, we explored the regulation of Hsp27 in adriamycin-resistant pathological conditions of breast cancer in vitro and in vivo. We found that overexpression of Hsp27 in MCF-7 breast cancer cells reversed DNA damage induced by adriamycin, and thereby reduced subsequent cell apoptosis. Non-phosphorylated Hsp27 accelerated ubiquitin-mediated degradation of c-Myc under normal physiological conditions. After stimulation with adriamycin, Hsp27 was phosphorylated and translocated from the cytoplasm into the nucleus, where phosphorylated Hsp27 upregulated c-Myc and Nijmegen breakage syndrome 1 (NBS1) protein levels thus leading to ATM activation. We further showed that phosphorylated Hsp27 promoted c-Myc nuclear import and stabilization by regulating T58/S62 phosphorylation of c-Myc through a protein phosphatase 2A (PP2A)-dependent mechanism. Collectively, the data presented in this study demonstrate that Hsp27, in its phosphorylation state, plays a critical role in adriamycin-resistant pathological conditions of breast cancer cells.
Collapse
Affiliation(s)
- Xiaowen Bi
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lixia Cheng
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Chunhong Huang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
16
|
Yu M, Ji W, Yang X, Tian K, Ma X, Yu S, Chen L, Zhao X. The role of m6A demethylases in lung cancer: diagnostic and therapeutic implications. Front Immunol 2023; 14:1279735. [PMID: 38094306 PMCID: PMC10716209 DOI: 10.3389/fimmu.2023.1279735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
m6A is the most prevalent internal modification of eukaryotic mRNA, and plays a crucial role in tumorigenesis and various other biological processes. Lung cancer is a common primary malignant tumor of the lungs, which involves multiple factors in its occurrence and progression. Currently, only the demethylases FTO and ALKBH5 have been identified as associated with m6A modification. These demethylases play a crucial role in regulating the growth and invasion of lung cancer cells by removing methyl groups, thereby influencing stability and translation efficiency of mRNA. Furthermore, they participate in essential biological signaling pathways, making them potential targets for intervention in lung cancer treatment. Here we provides an overview of the involvement of m6A demethylase in lung cancer, as well as their potential application in the diagnosis, prognosis and treatment of the disease.
Collapse
Affiliation(s)
- Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenqian Ji
- College of International Studies, Southwest University, Chongqing, China
| | - Xu Yang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Kai Tian
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital Affiliated Nantong Hospital of Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
17
|
Siddiqui SS, Hodeify R, Mathew S, Alsawaf S, Alghfeli A, Matar R, Merheb M, Marton J, Al Zouabi HA, Sethuvel DPM, Ragupathi NKD, Vazhappilly CG. Differential dose-response effect of cyclosporine A in regulating apoptosis and autophagy markers in MCF-7 cells. Inflammopharmacology 2023:10.1007/s10787-023-01247-4. [PMID: 37204695 DOI: 10.1007/s10787-023-01247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressant primarily used at a higher dosage in transplant medicine and autoimmune diseases with a higher success rate. At lower doses, CsA exhibits immunomodulatory properties. CsA has also been reported to inhibit breast cancer cell growth by downregulating the expression of pyruvate kinase. However, differential dose-response effects of CsA in cell growth, colonization, apoptosis, and autophagy remain largely unidentified in breast cancer cells. Herein, we showed the cell growth-inhibiting effects of CsA by preventing cell colonization and enhancing DNA damage and apoptotic index at a relatively lower concentration of 2 µM in MCF-7 breast cancer cells. However, at a higher concentration of 20 µM, CsA leads to differential expression of autophagy-related genes ATG1, ATG8, and ATG9 and apoptosis-associated markers, such as Bcl-2, Bcl-XL, Bad, and Bax, indicating a dose-response effect on differential cell death mechanisms in MCF-7 cells. This was confirmed in the protein-protein interaction network of COX-2 (PTGS2), a prime target of CsA, which had close interactions with Bcl-2, p53, EGFR, and STAT3. Furthermore, we investigated the combined effect of CsA with SHP2/PI3K-AKT inhibitors showing significant MCF-7 cell growth reduction, suggesting its potential to use as an adjuvant during breast cancer therapy.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, UK
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shimy Mathew
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Anood Alghfeli
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - John Marton
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Hussain AbdulKarim Al Zouabi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | | | - Naveen Kumar Devanga Ragupathi
- Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, India
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|