1
|
Saoud C, Gundem G, Vanderbilt CM, Wexler LH, Reed DR, Tap W, Singer S, Villafania LB, Papaemmanouil E, Benhamida J, Bale TA, Antonescu CR. Undifferentiated Pleomorphic Sarcoma in Children and Young Adults: A Comprehensive Clinicopathologic, Genomic, and Epigenetic Comparison with Adult Counterparts. Mod Pathol 2025:100769. [PMID: 40222653 DOI: 10.1016/j.modpat.2025.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Undifferentiated Pleomorphic Sarcoma (UPS) occurs primarily in older adults and remains a diagnosis of exclusion due to its lack of differentiation and specific molecular alterations. Its occurrence in children is rare and controversial, with an unclear relationship to its adult counterpart. Herein, we investigate a cohort of six pediatric UPS (P-UPS, mean 10 years old) and 19 young-adult UPS (YA-UPS, mean 30 years old) cases by conducting a comprehensive comparative analysis of their clinicopathologic, genomic and epigenetic features relative to their adult counterparts (A-UPS, n=100). Histologically, P- and YA-UPS exhibited broad morphologic spectrum. The most frequent alterations across all groups were TP53, CDKN2A/B, and ATRX, with no significant differences among subsets. Notably, RB1 alterations were absent in P-UPS, while representing the second most common alteration in YA-UPS (32%) and A-UPS (41%). PTEN alterations were significantly more prevalent in YA-UPS (26%) compared to P-UPS (0%) and A-UPS (6%). Deletions in chromosomes 10, 16q, and 13q, along with amplification of 20q, were the most common across all groups. Except for a higher frequency of 17q amplification in P-UPS (33%) and YA-UPS (26%) compared to A-UPS (6%), no other arm-level differences were observed. P-UPS showed a lower mean fraction genome altered compared to YA-UPS and A-UPS, while all UPS age groups showed a low tumor mutational burden (mean <10 mut/MB). Pathogenic germline variants of high clinical significance (TP53, NF1, MLH1, CHEK2 and BARD1) were observed only in YA- (31%) and A- (12%) UPS. By t-SNE and hierarchical clustering of DNA methylation, the majority of P-UPS and a small subset of YA-UPS grouped in a distinct cluster, characterized by a lower genomic index compared to A-UPS. In contrast, most UPS occurring in young adults genomically parallel their older adults' counterparts. P-UPS and YA-UPS exhibited a better disease-specific and progression-free survival, compared to A-UPS.
Collapse
Affiliation(s)
- Carla Saoud
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chad M Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Damon R Reed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William Tap
- Department of Medicine, Sarcoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liliana B Villafania
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanouil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
3
|
Lo EKW, Idrizi A, Tryggvadottir R, Zhou W, Hou W, Ji H, Cahan P, Feinberg AP. DNA methylation memory of pancreatic acinar-ductal metaplasia transition state altering Kras-downstream PI3K and Rho GTPase signaling in the absence of Kras mutation. Genome Med 2025; 17:32. [PMID: 40156071 PMCID: PMC11951614 DOI: 10.1186/s13073-025-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND A critical area of recent cancer research is the emergence of transition states between normal and cancer that exhibit increased cell plasticity which underlies tumor cell heterogeneity. Pancreatic ductal adenocarcinoma (PDAC) can arise from the combination of a transition state termed acinar-to-ductal metaplasia (ADM) and a gain-of-function mutation in the proto-oncogene KRAS. During ADM, digestive enzyme-producing acinar cells acquire a transient ductal epithelium-like phenotype while maintaining their geographical acinar organization. One route of ADM initiation is the overexpression of the Krüppel-like factor 4 gene (KLF4) in the absence of oncogenic driver mutations. Here, we asked to what extent cells acquire and retain an epigenetic memory of the ADM transition state in the absence of oncogene mutation. METHODS We profiled the DNA methylome and transcriptome of KLF4-induced ADM in transgenic mice at various timepoints during and after recovery from ADM. We validated the identified DNA methylation and transcriptomic signatures in the widely used caerulein model of inducible pancreatitis. RESULTS We identified differential DNA methylation at Kras-downstream PI3K and Rho/Rac/Cdc42 GTPase pathway genes during ADM, as well as a corresponding gene expression increase in these pathways. Importantly, differential methylation persisted after gene expression returned to normal. Caerulein exposure, which induces widespread digestive system changes in addition to ADM, showed similar changes in DNA methylation in ADM cells. Regions of differential methylation were enriched for motifs of KLF and AP-1 family transcription factors, as were those of human pancreatic intraepithelial neoplasia (PanIN) samples, demonstrating the relevance of this epigenetic transition state memory in human carcinogenesis. Finally, single-cell spatial transcriptomics revealed that these ADM transition cells were enriched for PI3K pathway and AP1 family members. CONCLUSIONS Our comprehensive study of DNA methylation in the acinar-ductal metaplasia transition state links epigenetic memory to cancer-related cell plasticity even in the absence of oncogenic mutation.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wenpin Hou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, USA.
| |
Collapse
|
4
|
Stojchevski R, Sutanto EA, Sutanto R, Hadzi-Petrushev N, Mladenov M, Singh SR, Sinha JK, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Bhaskar R, Avtanski D. Translational Advances in Oncogene and Tumor-Suppressor Gene Research. Cancers (Basel) 2025; 17:1008. [PMID: 40149342 PMCID: PMC11940485 DOI: 10.3390/cancers17061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cancer, characterized by the uncontrolled proliferation of cells, is one of the leading causes of death globally, with approximately one in five people developing the disease in their lifetime. While many driver genes were identified decades ago, and most cancers can be classified based on morphology and progression, there is still a significant gap in knowledge about genetic aberrations and nuclear DNA damage. The study of two critical groups of genes-tumor suppressors, which inhibit proliferation and promote apoptosis, and oncogenes, which regulate proliferation and survival-can help to understand the genomic causes behind tumorigenesis, leading to more personalized approaches to diagnosis and treatment. Aberration of tumor suppressors, which undergo two-hit and loss-of-function mutations, and oncogenes, activated forms of proto-oncogenes that experience one-hit and gain-of-function mutations, are responsible for the dysregulation of key signaling pathways that regulate cell division, such as p53, Rb, Ras/Raf/ERK/MAPK, PI3K/AKT, and Wnt/β-catenin. Modern breakthroughs in genomics research, like next-generation sequencing, have provided efficient strategies for mapping unique genomic changes that contribute to tumor heterogeneity. Novel therapeutic approaches have enabled personalized medicine, helping address genetic variability in tumor suppressors and oncogenes. This comprehensive review examines the molecular mechanisms behind tumor-suppressor genes and oncogenes, the key signaling pathways they regulate, epigenetic modifications, tumor heterogeneity, and the drug resistance mechanisms that drive carcinogenesis. Moreover, the review explores the clinical application of sequencing techniques, multiomics, diagnostic procedures, pharmacogenomics, and personalized treatment and prevention options, discussing future directions for emerging technologies.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Edward Agus Sutanto
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA;
| | - Rinni Sutanto
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY 11545, USA;
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Sajal Raj Singh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, Maharashtra, India;
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, Haryana, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
5
|
Wang TW, Nakanishi M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol 2025; 35:248-257. [PMID: 39025762 DOI: 10.1016/j.tcb.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Several lines of evidence suggest that the age-dependent accumulation of senescent cells leads to chronic tissue microinflammation, which in turn contributes to age-related pathologies. In general, senescent cells can be eliminated by the host's innate and adaptive immune surveillance system, including macrophages, NK cells, and T cells. Impaired immune surveillance leads to the accumulation of senescent cells and accelerates the aging process. Recently, senescent cells, like cancer cells, have been shown to express certain types of immune checkpoint proteins as well as non-classical immune-tolerant MHC variants, leading to immune escape from surveillance systems. Thus, immune checkpoint blockade (ICB) may be a promising strategy to enhance immune surveillance of senescence, leading to the amelioration of some age-related diseases and tissue dysfunction.
Collapse
Affiliation(s)
- Teh-Wei Wang
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
6
|
Jąkalski M, Bruhn-Olszewska B, Rychlicka-Buniowska E, Davies H, Sarkisyan D, Siedlar M, Baran J, Węglarczyk K, Jaszczynski J, Ryś J, Gedraitis V, Filipowicz N, Klich-Rączka A, Kilander L, Ingelsson M, Dumanski JP. DNA methylation patterns contribute to changes of cellular differentiation pathways in leukocytes with LOY from patients with Alzheimer´s disease. Cell Mol Life Sci 2025; 82:93. [PMID: 39998604 PMCID: PMC11861481 DOI: 10.1007/s00018-025-05618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a common and increasing societal problem due to the extending human lifespan. In males, loss of chromosome Y (LOY) in leukocytes is strongly associated with AD. We studied here DNA methylation and RNA expression in sorted monocytes and granulocytes with and without LOY from male AD patients. Through multi-omic analysis, we identified new candidate genes along with those previously associated with AD. Global analyses of DNA methylation in samples with LOY vs. normal state showed that hypomethylation dominated both in granulocytes and monocytes. Our findings highlight LOY-related differences in DNA methylation that occur in gene regulatory regions. Specifically, we observed alterations in key genes involved in leukocyte differentiation: FLI1, involved in early hematopoiesis; RUNX1, essential for blood cell development; RARA, regulating gene expression in response to retinoic acid; CANX, crucial for protein folding; CEBPB, a transcription factor important for immune responses; and MYADM, implicated in cell adhesion and migration. Moreover, protein-protein interaction analysis in granulocytes identified that products of two of these genes, CANX and CEBPB, are key hub proteins. This research underscores the potential of multi-omic approach in pure hematopoietic cell populations to uncover the molecular underpinnings of AD. Finally, our results link previous analysis showing impact of LOY on leukocyte differentiation, LOY-associated transcriptional dysregulation and GWAS studies of LOY.
Collapse
Affiliation(s)
- Marcin Jąkalski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | | | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Janusz Jaszczynski
- Department of Urology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Vilmantas Gedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Alicja Klich-Rączka
- Department and Clinic of Internal Medicine and Gerontology, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jan P Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Nikolopoulos T, Bochalis E, Chatzilygeroudi T, Chondrou V, Dereki I, Athanasopoulou K, Zafeiropoulos J, Bourikas K, Patrinos GP, Symeonidis A, Sgourou A. Integrating advanced analytical methods to assess epigenetic marks affecting response to hypomethylating agents in higher risk myelodysplastic syndrome. Mol Med 2025; 31:59. [PMID: 39953389 PMCID: PMC11829487 DOI: 10.1186/s10020-025-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Patients with higher-risk (HR) myelodysplastic syndrome (MDS), ineligible for allogeneic hematopoietic stem cell transplantation (alloHSCT), require prompt therapeutic interventions, such as treatment with hypomethylating agents (HMAs) to restore normal DNA methylation patterns, mainly of oncosuppressor genes, and consequently to delay disease progression and increase overall survival (OS). However, response assessment to HMA treatment relies on conventional methods with limited capacity to uncover a wide spectrum of underlying molecular events. METHODS We implemented liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess 5' methyl-2' deoxycytidine (5mdC), 5' hydroxy-methyl-2'-deoxycytidine (5hmdC) levels and global adenosine/thymidine ([dA]/[T]) ratio in bone marrow aspirates from twenty-one HR MDS patients, pre- and post-HMA treatment. Additionally, targeted methylation analysis was performed by interpretation of NGS-methylation (MeD-seq) data obtained from the same patient cohort. RESULTS LC/MS-MS analysis revealed a significant hypomethylation status in responders (Rs), already established at baseline and a trend for further DNA methylation reduction post-HMA treatment. Non-responders (NRs) reached statistical significance for DNA hypomethylation only post-HMA treatment. The 5hmdC epigenetic mark was approximately detected at 37.5-40% among NRs and Rs, implying the impairment of the natural active demethylation pathway, mediated by the ten-eleven (TET) 5mdC dioxygenases. R and NR subgroups displayed a [dA]/[T] ratio < 1 (0.727 - 0.633), supporting high frequences of 5mdC transition to thymidine. Response to treatment, according to whole genome MeD-seq data analysis, was associated with specific, scattered hypomethylated DMRs, rather than presenting a global effect across genome. MeD-seq analysis identified divergent epigenetic effects along chromosomes 7, 9, 12, 16, 18, 21, 22, X and Y. Within statistically significant selected chromosomal bins, genes encoding for proteins and non-coding RNAs with reversed methylation profiles between Rs and NRs, were highlighted. CONCLUSIONS Implementation of powerful analytical tools to identify the dynamic DNA methylation changes in HR MDS patients undergoing HMA therapy demonstrated that LC-MS/MS exerts high efficiency as a broad-based but rapid and cost-effective methodology (compared to MeD-seq) to decode different perspectives of the epigenetic background of HR MDS patients and possess discriminative efficacy of the response phenotype to HMA treatment.
Collapse
Affiliation(s)
- Theodoros Nikolopoulos
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Eleftherios Bochalis
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Theodora Chatzilygeroudi
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Irene Dereki
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - John Zafeiropoulos
- Chemistry Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Kyriakos Bourikas
- Chemistry Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Inaffiliationidualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Clinical Bioinformatics Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Argiris Symeonidis
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece.
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.
| |
Collapse
|
8
|
Wagner RT, Hlady RA, Pan X, Wang L, Kim S, Zhao X, El Khoury LY, Shaikh S, Zhong J, Lee JH, Grembecka J, Cierpicki T, Ho TH, Robertson KD. SETD2 loss-of-function uniquely sensitizes cells to epigenetic targeting of NSD1-directed H3K36 methylation. Genome Biol 2025; 26:22. [PMID: 39910618 PMCID: PMC11800516 DOI: 10.1186/s13059-025-03483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND SETD2 is the sole epigenetic factor responsible for catalyzing histone 3, lysine 36, tri-methylation (H3K36me3) in mammals. Its role in regulating cellular processes such as RNA splicing, DNA repair, and spurious transcription initiation underlies its broader tumor suppressor function. SETD2 mutation promotes the epithelial-mesenchymal transition and is clinically associated with adverse outcomes highlighting a therapeutic need to develop targeted therapies against this dangerous mutation. RESULTS We employ an unbiased genome-wide synthetic lethal screen, which identifies another H3K36me writer, NSD1, as a synthetic lethal modifier in SETD2-mutant cells. Confirmation of this synthetic lethal interaction is performed in isogenic clear cell renal cell carcinoma and immortalized renal epithelial cell lines, in mouse and human backgrounds. Depletion of NSD1 using a CRISPRi targeting approach promotes the loss of SETD2-mutant cells coincident with elevated levels of DNA damage and apoptosis. Surprisingly, only suppression of NSD1, but not related H3K36-methyltransferases, promotes synthetic lethality in these models. Mapping of genomic H3K36me2 targeting by NSD1 and NSD2 individually highlights the independent functions of these epigenetic writers. Furthermore, as a proof-of-principle, we demonstrate the therapeutic feasibility of targeting this synthetic lethal interaction by recapitulating the phenotype using BT5, a first-in-class pharmacologic inhibitor against NSD1. CONCLUSIONS These findings unify genome-wide screening approaches with the latest genetic and pharmacologic modeling methodologies to reveal an entirely novel epigenetic approach to individualize therapies against a challenging loss-of-function SETD2 mutation in cancer.
Collapse
Affiliation(s)
- Ryan T Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-70, Rochester, MN, 55905, USA
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-70, Rochester, MN, 55905, USA
| | - Xiaoyu Pan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-70, Rochester, MN, 55905, USA
| | - Liguo Wang
- Division of Computational Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Sungho Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-70, Rochester, MN, 55905, USA
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-70, Rochester, MN, 55905, USA
| | - Louis Y El Khoury
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-70, Rochester, MN, 55905, USA
| | - Shafiq Shaikh
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jian Zhong
- Epigenomics Development Laboratory, Mayo Clinic, CIM Epigenomics Program, Rochester, MN, USA
| | - Jeong-Heon Lee
- Epigenomics Development Laboratory, Mayo Clinic, CIM Epigenomics Program, Rochester, MN, USA
| | | | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Thai H Ho
- Division of Hematology and Oncology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-70, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Molefi T, Mabonga L, Hull R, Sebitloane M, Dlamini Z. From Genes to Clinical Practice: Exploring the Genomic Underpinnings of Endometrial Cancer. Cancers (Basel) 2025; 17:320. [PMID: 39858102 PMCID: PMC11763595 DOI: 10.3390/cancers17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Endometrial cancer (EC), a prevalent gynecological malignancy, presents significant challenges due to its genetic complexity and heterogeneity. The genomic landscape of EC is underpinned by genetic alterations, such as mutations in PTEN, PIK3CA, and ARID1A, and chromosomal abnormalities. The identification of molecular subtypes-POLE ultramutated, microsatellite instability (MSI), copy number low, and copy number high-illustrates the diverse genetic profiles within EC and underscores the need for subtype-specific therapeutic strategies. The integration of multi-omics technologies such as single-cell genomics and spatial transcriptomics has revolutionized our understanding and approach to studying EC and offers a holistic perspective that enhances the ability to identify novel biomarkers and therapeutic targets. The translation of these multi-omics findings into personalized medicine and precision oncology is increasingly feasible in clinical practice. Targeted therapies such as PI3K/AKT/mTOR inhibitors have demonstrated the potential for improved treatment efficacy tailored to specific genetic alterations. Despite these advancements, challenges persist in terms of variability in patient responses, the integration of genomic data into clinical workflows, and ethical considerations. This review explores the genomic underpinnings of EC, from genes to clinical practice. It highlights the ongoing need for multidisciplinary research and collaboration to address the complexities of EC and improve diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Thulo Molefi
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
- Department of Medical Oncology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lloyd Mabonga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| | - Motshedisi Sebitloane
- Discipline of Obstetrics and Gynaecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4002, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa; (L.M.); (R.H.)
| |
Collapse
|
10
|
Constâncio V, Lobo J, Sequeira JP, Henrique R, Jerónimo C. Prostate cancer epigenetics - from pathophysiology to clinical application. Nat Rev Urol 2025:10.1038/s41585-024-00991-8. [PMID: 39820138 DOI: 10.1038/s41585-024-00991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Prostate cancer is a multifactorial disease influenced by various molecular features. Over the past decades, epigenetics, which is the study of changes in gene expression without altering the DNA sequence, has been recognized as a major driver of this disease. In the past 50 years, advancements in technological tools to characterize the epigenome have highlighted crucial roles of epigenetic mechanisms throughout the entire spectrum of prostate cancer, from initiation to progression, including localized disease, metastatic dissemination, castration resistance and neuroendocrine transdifferentiation. Substantial advances in the understanding of epigenetic mechanisms in the pathophysiology of prostate cancer have been carried out, but translating preclinical achievements into clinical practice remains challenging. Ongoing research and biomarker-oriented clinical trials are expected to increase the likelihood of successfully integrating epigenetics into prostate cancer clinical management.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Tse AY, Spakowitz AJ. Modeling DNA methyltransferase function to predict epigenetic correlation patterns in healthy and cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2415530121. [PMID: 39792289 PMCID: PMC11745332 DOI: 10.1073/pnas.2415530121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/16/2024] [Indexed: 01/12/2025] Open
Abstract
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established. Our model predicts DNA methylation-state correlation distributions arising from the transport and kinetic properties that are crucial for the establishment of unique methylation profiles. We model the methylation correlation distributions of nine cancerous human cell types to determine how these properties affect the epigenetic profile. Our theory is capable of recapitulating experimental methylation patterns, suggesting the importance of DNA methyltransferase transport in epigenetic regulation. Through this work, we propose a mechanistic description for the establishment of methylation profiles, capturing the key behavioral characteristics of methyltransferase that lead to aberrant methylation.
Collapse
Affiliation(s)
- Ariana Y. Tse
- Department of Materials Science, Stanford University, Stanford, CA94305
| | | |
Collapse
|
12
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Jain AK, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. Cell Chem Biol 2024; 31:2112-2127.e6. [PMID: 39437789 DOI: 10.1016/j.chembiol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a key epigenetic process. Developing non-nucleoside inhibitors to cause DNA hypomethylation is crucial for treating various conditions without the toxicities associated with existing cytidine-based hypomethylating agents. This study characterized fifteen quinoline-based analogs, particularly compounds with additions like a methylamine (9) or methylpiperazine (11), which demonstrate similar low micromolar inhibitory potency against human DNMT1 and Clostridioides difficile CamA. These compounds (9 and 11) intercalate into CamA-bound DNA via the minor groove, causing a conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation. Additionally, some quinoline-based analogs inhibit other DNA-interacting enzymes, such as polymerases and base excision repair glycosylases. Finally, compound 11 elicits DNA damage response via p53 activation in cancer cells.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caleb Chang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Leora Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Yifei Yang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Mohanty SK, Chiaromonte F, Makova KD. Evolutionary Dynamics of G-Quadruplexes in Human and Other Great Ape Telomere-to-Telomere Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621973. [PMID: 39574740 PMCID: PMC11580976 DOI: 10.1101/2024.11.05.621973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that can form at approximately 1% of the human genome. G4s contribute to point mutations and structural variation and thus facilitate genomic instability. They play important roles in regulating replication, transcription, and telomere maintenance, and some of them evolve under purifying selection. Nevertheless, the evolutionary dynamics of G4s has remained underexplored. Here we conducted a comprehensive analysis of predicted G4s (pG4s) in the recently released, telomere-to-telomere (T2T) genomes of human and other great apes-bonobo, chimpanzee, gorilla, Bornean orangutan, and Sumatran orangutan. We annotated tens of thousands of new pG4s in T2T compared to previous ape genome assemblies, including 41,236 in the human genome. Analyzing species alignments, we found approximately one-third of pG4s shared by all apes studied and identified thousands of species- and genus-specific pG4s. pG4s accumulated and diverged at rates consistent with divergence times between the studied species. We observed a significant enrichment and hypomethylation of pG4 shared across species at regulatory regions, including promoters, 5' and 3'UTRs, and origins of replication, strongly suggesting their formation and functional role in these regions. pG4s shared among great apes displayed lower methylation levels compared to species-specific pG4s, suggesting evolutionary conservation of functional roles of the former. Many species-specific pG4s were located in the repetitive and satellite regions deciphered in the T2T genomes. Our findings illuminate the evolutionary dynamics of G4s, their role in gene regulation, and their potential contribution to species-specific adaptations in great apes, emphasizing the utility of high-resolution T2T genomes in uncovering previously elusive genomic features.
Collapse
Affiliation(s)
- Saswat K. Mohanty
- Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|
14
|
Li L, Fei X, Wang H, Chen S, Xu X, Ke H, Zhou Y, Hu Y, He C, Xie C, Lu N, Liu J, Zhu Y, Li N. Genome-wide DNA methylation profiling reveals a novel hypermethylated biomarker PRKCB in gastric cancer. Sci Rep 2024; 14:26605. [PMID: 39496833 PMCID: PMC11535215 DOI: 10.1038/s41598-024-78135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Globally, gastric cancer (GC) ranks among the most prevalent forms of malignancy, posing a significant health burden. Epigenetic modifications, predominantly characterized by alterations in DNA methylation patterns, have been linked to a diverse array of neoplastic processes. Here, we undertake a comprehensive analysis of the DNA methylation signature in GC, with the aim to discover the potential diagnostic epigenetic biomarkers. Utilizing the Illumina 935 K BeadChip, we conducted a genome-wide exploration of DNA methylation patterns in four paired samples of GC tissues and adjacent non-cancerous counterparts. The bisulfite-pyrosequencing (n = 7) was employed to the quantification for methylated gene. The pubic databases including GWAS Catalog, TCGA and GEO were used. The immunohistochemistry and qRT-PCR analysis were performed. In contrast to adjacent tissues, GC tissues manifested pronounced hypermethylation patterns specifically within the promoter cytosine-phosphate-guanine (CpG) islands, indicating localized epigenetic alterations. DNA methylome analysis further revealed 4432 differentially-methylated probes (DMPs), with the gene PRKCB exhibited the most prominent average DNA methylation disparity (mean Δβ = 0.353). Pyrosequencing validation confirmed three DMPs within the PRKCB promoter (cg08406370, cg00735962, and cg18526361). Notably, the mean methylation levels of PRKCB were inversely correlated with mRNA expression levels in the GWAS Catalog. Furthermore, both mRNA and protein expression levels of PRKCB were significantly reduced in GCs when compared to their adjacent non-cancerous counterparts, verified by TCGA and GEO database. Our study reveals significant DNA methylation alterations in GC and emphasizes the pivotal role of PRKCB gene hypermethylation in conferring GC risk, which offers fresh perspectives for advancing diagnostic approaches and therapeutic strategies for GC.
Collapse
Affiliation(s)
- Leyan Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sihai Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Hu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
15
|
Lo EKW, Idrizi A, Tryggvadottir R, Zhou W, Hou W, Ji H, Cahan P, Feinberg AP. DNA methylation memory of pancreatic acinar-ductal metaplasia transition state altering Kras-downstream PI3K and Rho GTPase signaling in the absence of Kras mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620414. [PMID: 39553977 PMCID: PMC11565792 DOI: 10.1101/2024.10.26.620414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A critical area of recent cancer research is the emergence of transition states between normal and cancer that exhibit increased cell plasticity which underlies tumor cell heterogeneity. Pancreatic ductal adenocarcinoma (PDAC) can arise from the combination of a transition state termed acinar-to-ductal metaplasia (ADM) and a gain-of-function mutation in the proto-oncogene KRAS . During ADM, digestive enzyme-producing acinar cells acquire a transient ductal epithelium-like phenotype while maintaining their geographical acinar organization. One route of ADM initiation is the overexpression of the Krüppel-like factor 4 gene ( KLF4 ) in the absence of oncogenic driver mutations. Here, we asked to what extent cells acquire and retain an epigenetic memory of the ADM transition state in the absence of oncogene mutation. We identified differential DNA methylation at Kras-downstream PI3K and Rho / Rac / Cdc42 GTPase pathway genes during ADM, as well as a corresponding gene expression increase in these pathways. Importantly, differential methylation persisted after gene expression returned to normal. Caerulein exposure, which induces widespread digestive system changes in addition to ADM, showed similar changes in DNA methylation in ADM cells. Regions of differential methylation were enriched for motifs of KLF and AP-1 family transcription factors, as were those of human pancreatic intraepithelial neoplasia (PanIN) samples, demonstrating the relevance of this epigenetic transition state memory in human carcinogenesis. Finally, single-cell spatial transcriptomics revealed that these ADM transition cells were enriched for PI3K pathway and AP1 family members, linking epigenetic memory to cancer cell plasticity even in the absence of oncogene mutation.
Collapse
|
16
|
Li T, Chen Y, Li S. The Advances in the Development of Epigenetic Modifications Therapeutic Drugs Delivery Systems. Int J Nanomedicine 2024; 19:10623-10637. [PMID: 39445155 PMCID: PMC11498046 DOI: 10.2147/ijn.s480095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic dysregulation can significantly trigger the onset and progression of various diseases, epigenetic therapy is a new treatment strategy by changing DNA methylation, histone modification, N6-methyladenosine, chromatin modification and other epigenetic modifications to regulate gene expression levels for therapeutic purposes. However, small-molecule epigenetic drugs face challenges in disease treatment, such as lack of selectivity, limited therapeutic efficacy, and insufficient safety. Nanomedicine delivery systems offer significant advantages in addressing these issues by enhancing drug targeting, improving bioavailability, and reducing nonspecific distribution. This help minimize side effects while increasing both therapeutic effectiveness and safety of epigenetic drugs. In this review, we focus on the mechanism and role of epigenetic regulatory factors in diseases, as well as the challenges faced by small molecule inhibitors in treatment strategies, especially the research advancements in epigenetic drug delivery systems, review and discuss the therapeutic potential and challenges of using nanotechnology to develop epigenetic drug delivery systems.
Collapse
Affiliation(s)
- Tingyi Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
17
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
18
|
Ye BJ, Li DF, Li XY, Hao JL, Liu DJ, Yu H, Zhang CD. Methylation synthetic lethality: Exploiting selective drug targets for cancer therapy. Cancer Lett 2024; 597:217010. [PMID: 38849016 DOI: 10.1016/j.canlet.2024.217010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
Collapse
Affiliation(s)
- Bing-Jie Ye
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Fei Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hang Yu
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
19
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
20
|
Tawfeeq MT, Voordeckers K, van den Berg P, Govers SK, Michiels J, Verstrepen KJ. Mutational robustness and the role of buffer genes in evolvability. EMBO J 2024; 43:2294-2307. [PMID: 38719995 PMCID: PMC11183146 DOI: 10.1038/s44318-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.
Collapse
Affiliation(s)
- Mohammed T Tawfeeq
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Karin Voordeckers
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
22
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587980. [PMID: 38617249 PMCID: PMC11014617 DOI: 10.1101/2024.04.03.587980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Abstract Figure Highlights Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.
Collapse
|
23
|
Scelfo A, Barra V, Abdennur N, Spracklin G, Busato F, Salinas-Luypaert C, Bonaiti E, Velasco G, Bonhomme F, Chipont A, Tijhuis AE, Spierings DC, Guérin C, Arimondo P, Francastel C, Foijer F, Tost J, Mirny L, Fachinetti D. Tunable DNMT1 degradation reveals DNMT1/DNMT3B synergy in DNA methylation and genome organization. J Cell Biol 2024; 223:e202307026. [PMID: 38376465 PMCID: PMC10876481 DOI: 10.1083/jcb.202307026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Viviana Barra
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Nezar Abdennur
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George Spracklin
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florence Busato
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | | | - Elena Bonaiti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | | | - Frédéric Bonhomme
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523 Chem4Life, Université Paris Cité, Paris, France
| | - Anna Chipont
- Cytometry Platform, Institut Curie, Paris, France
| | - Andréa E. Tijhuis
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Coralie Guérin
- Cytometry Platform, Institut Curie, Paris, France
- Université Paris Cité, INSERM, Paris, France
| | - Paola Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523 Chem4Life, Université Paris Cité, Paris, France
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jӧrg Tost
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | - Leonid Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| |
Collapse
|
24
|
Vargas-López V, Prada LF, Alméciga-Díaz CJ. Evidence of epigenetic landscape shifts in mucopolysaccharidosis IIIB and IVA. Sci Rep 2024; 14:3961. [PMID: 38368436 PMCID: PMC10874391 DOI: 10.1038/s41598-024-54626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of monogenic diseases characterized by mutations in genes coding for proteins associated with the lysosomal function. Despite the monogenic nature, LSDs patients exhibit variable and heterogeneous clinical manifestations, prompting investigations into epigenetic factors underlying this phenotypic diversity. In this study, we focused on the potential role of epigenetic mechanisms in the pathogenesis of mucopolysaccharidosis IIIB (MPS IIIB) and mucopolysaccharidosis IVA (MPS IVA). We analyzed DNA methylation (5mC) and histone modifications (H3K14 acetylation and H3K9 trimethylation) in MPS IIIB and MPS IVA patients' fibroblasts and healthy controls. The findings revealed that global DNA hypomethylation is present in cell lines for both diseases. At the same time, histone acetylation was increased in MPS IIIB and MPS IVA cells in a donor-dependent way, further indicating a shift towards relaxed open chromatin in these MPS. Finally, the constitutive heterochromatin marker, histone H3K9 trimethylation, only showed reduced clustering in MPS IIIB cells, suggesting limited alterations in heterochromatin organization. These findings collectively emphasize the significance of epigenetic mechanisms in modulating the phenotypic variations observed in LSDs. While global DNA hypomethylation could contribute to the MPS pathogenesis, the study also highlights individual-specific epigenetic responses that might contribute to phenotypic heterogeneity. Further research into the specific genes and pathways affected by these epigenetic changes could provide insights into potential therapeutic interventions for these MPS and other LSDs.
Collapse
Affiliation(s)
- Viviana Vargas-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Luisa F Prada
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Edificio 54, Laboratorio 305A, Bogotá D.C., 110231, Colombia.
| |
Collapse
|
25
|
Sacdalan DB, Ul Haq S, Lok BH. Plasma Cell-Free Tumor Methylome as a Biomarker in Solid Tumors: Biology and Applications. Curr Oncol 2024; 31:482-500. [PMID: 38248118 PMCID: PMC10814449 DOI: 10.3390/curroncol31010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNA methylation is a fundamental mechanism of epigenetic control in cells and its dysregulation is strongly implicated in cancer development. Cancers possess an extensively hypomethylated genome with focal regions of hypermethylation at CPG islands. Due to the highly conserved nature of cancer-specific methylation, its detection in cell-free DNA in plasma using liquid biopsies constitutes an area of interest in biomarker research. The advent of next-generation sequencing and newer computational technologies have allowed for the development of diagnostic and prognostic biomarkers that utilize methylation profiling to diagnose disease and stratify risk. Methylome-based predictive biomarkers can determine the response to anti-cancer therapy. An additional emerging application of these biomarkers is in minimal residual disease monitoring. Several key challenges need to be addressed before cfDNA-based methylation biomarkers become fully integrated into practice. The first relates to the biology and stability of cfDNA. The second concerns the clinical validity and generalizability of methylation-based assays, many of which are cancer type-specific. The third involves their practicability, which is a stumbling block for translating technologies from bench to clinic. Future work on developing pan-cancer assays with their respective validities confirmed using well-designed, prospective clinical trials is crucial in pushing for the greater use of these tools in oncology.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Sami Ul Haq
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Schulich School of Medicine & Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada
| | - Benjamin H. Lok
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
26
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic reprogramming of therapy-resistant circulating tumor cells in colon cancer. Front Cell Dev Biol 2023; 11:1291179. [PMID: 38188020 PMCID: PMC10771310 DOI: 10.3389/fcell.2023.1291179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Therapy resistance is a major challenge in colorectal cancer management. Epigenetic changes, such as DNA methylation, in tumor cells are involved in the development of acquired resistance during treatment. Here, we characterized the DNA methylation landscape of colon circulating tumor cells (CTCs) during cancer progression and therapy resistance development. To this aim, we used nine permanent CTC lines that were derived from peripheral blood samples of a patient with metastatic colon cancer collected before treatment initiation (CTC-MCC-41) and during treatment and cancer progression (CTC-MCC-41.4 and CTC-MCC-41.5 [A-G]). We analyzed the DNA methylome of these nine CTC lines using EPIC arrays and also assessed the association between DNA methylation and gene expression profiles. We confirmed DNA methylation and gene expression results by pyrosequencing and RT-qPCR, respectively. The global DNA methylation profiles were different in the pre-treatment CTC line and in CTC lines derived during therapy resistance development. These resistant CTC lines were characterized by a more hypomethylated profile compared with the pre-treatment CTC line. Most of the observed DNA methylation differences were localized at CpG-poor regions and some in CpG islands, shore regions and promoters. We identified a distinctive DNA methylation signature that clearly differentiated the pre-treatment CTC line from the others. Of note, the genes involved in this signature were associated with cancer-relevant pathways, including PI3K/AKT, MAPK, Wnt signaling and metabolism. We identified several epigenetically deregulated genes associated with therapy resistance in CTCs, such as AP2M1. Our results bring new knowledge on the epigenomic landscape of therapy-resistant CTCs, providing novel mechanisms of resistance as well as potential biomarkers and therapeutic targets for advanced CRC management.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
27
|
Pechanec MY, Mienaltowski MJ. Decoding the transcriptomic expression and genomic methylation patterns in the tendon proper and its peritenon region in the aging horse. BMC Res Notes 2023; 16:267. [PMID: 37821884 PMCID: PMC10566085 DOI: 10.1186/s13104-023-06562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES Equine tendinopathies are challenging because of the poor healing capacity of tendons commonly resulting in high re-injury rates. Within the tendon, different regions - tendon proper (TP) and peritenon (PERI) - contribute to the tendon matrix in differing capacities during injury and aging. Aged tendons have decreased repair potential; the underlying transcriptional and epigenetic changes that occur in the TP and PERI regions are not well understood. The objective of this study was to assess TP and PERI regional differences in adolescent, midlife, and geriatric horses using RNA sequencing and DNA methylation techniques. RESULTS Differences existed between TP and PERI regions of equine superficial digital flexor tendons by age as evidenced by RNASeq and DNA methylation. Cluster analysis indicated that regional distinctions existed regardless of age. Genes such as DCN, COMP, FN1, and LOX maintained elevated TP expression while genes such as GSN and AHNAK were abundant in PERI. Increased gene activity was present in adolescent and geriatric populations but decreased during midlife. Regional differences in DNA methylation were also noted. Notably, when evaluating all ages of TP against PERI, five genes (HAND2, CHD9, RASL11B, ADGRD1, and COL14A1) had regions of differential methylation as well as differential gene expression.
Collapse
Affiliation(s)
- Monica Y Pechanec
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Michael J Mienaltowski
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|