1
|
Xu N, Xiang X, Chen H, Chen Y, Wang S, Guo H, Wei X, Chen J, Xu X, Wei Q. Zinc finger protein 296 promotes hepatocellular carcinoma progression via intervening interaction between macrophages and B cells. Chin J Cancer Res 2024; 36:517-529. [PMID: 39539816 PMCID: PMC11555204 DOI: 10.21147/j.issn.1000-9604.2024.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is a prevalent malignancy with poor survival. Different cell types in the tumor microenvironment participate in the tumorigenesis and progression of HCC. This study aimed to analyze the immune microenvironment of HCC and its relationship with clinical outcomes. Methods We analyzed HCC RNA-seq for cell type identification and prognosis by estimating relative subsets of RNA transcripts using CIBERSORTx. The interaction between B cells and macrophages in HCC was analyzed using a Hepa1-6 orthotopic transplantation mouse model and flow cytometry. The effect of Zinc finger protein 296 (ZNF296) on the interaction of B cells and macrophages was verified using human HCC tissues analyzed through western blot, quantitative real-time polymerase chain reaction (qPCR), and multiplex immunofluorescence. A comparative analysis of immune cells associated with HCC prognosis was performed using RNA-seq data from The Cancer Genome Atlas (TCGA), bulk multimodal data, and single-cell transcriptomic data from existing HCC single-cell transcriptomic data employing the Single Cell Inferred Site Specific Omics Resource for Tumor Microenvironments (SCISSOR). Results Liver hepatocellular carcinoma (LIHC) RNA-seq analysis of TCGA showed that high eosinophil infiltration promoted HCC progression. The proportion of B cells correlated with that of macrophages (r=-0.24) and affected the infiltration and programmed death ligand 1 (PD-L1) expression of macrophages in HCC. ZNF296 may participate in the interaction between B cells and macrophages to accelerate the HCC progression by regulating PAFAH1B3 and H2AFX. Moreover, ZNF296 expression positively correlated with LAG3 (r=0.27) and CTLA4 (r=0.31) expression levels. Among the immune cell phenotypes related to survival and death identified by SCISSOR analysis, T cells correlated with an excellent prognosis of HCC. The normal function of liver and dendritic cells was also associated with a good prognosis in HCC. Conclusions This study analyzed the interaction of the immune microenvironment with HCC prognosis, identifying ZNF296 as a promising diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Nan Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xiaonan Xiang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huan Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yiyuan Chen
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Haijun Guo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
2
|
You H, Wang Y, Wang X, Zhu H, Zhao Y, Qin P, Liu X, Zhang M, Fu X, Xu B, Zhang Y, Wang Z, Gao Q. CD69 + Vδ1γδ T cells are anti-tumor subpopulations in hepatocellular carcinoma. Mol Immunol 2024; 172:76-84. [PMID: 38917598 DOI: 10.1016/j.molimm.2024.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC), one of the malignancies with a wide expression of stress ligands recognized by Vδ1γδ T cells, has received much attention in adoptive immunotherapy of γδ T cells. In this study, we aimed to identify the potential anti-tumor Vδ1γδ T subpopulations in HCC. METHODS Healthy donors (HDs) and HCC patients were recruited from the Affiliated Cancer Hospital of Zhengzhou University. Blood and tumor tissue samples were obtained respectively. Bioinformatics methods were used to analyze total γδ T cells and subsets infiltration, overall survival of HCC patients with high and low infiltration level of Vδ1γδ T cells, and IFNG, granzyme A, granzyme B and perforin expression in TRDV1high/lowCD69high/low groups. CD69 expression and Vδ1γδT cells infiltration in HCC were detected by immunofluorescence. Phenotypic analysis of Vδ1γδ T cells in blood and tumor tissue samples were performed by flow cytometry. RESULTS Vδ1γδ T cells infiltrating in HCC were associated with better clinical outcome. Study in tumor micro-environment (TME) of HCC demonstrated that not total Vδ1γδ T but CD69+ Vδ1γδ subset infiltration was associated with smaller tumor volume. Moreover, HCC patients simultaneously with high TRDV1 and CD69 expression produced more effector molecules and had longer survival time. Since Vδ1γδ T cells in the tumor microenvironment were often difficult to access, we demonstrated that CD69+ Vδ1γδ T cells also existed in peripheral blood mononuclear cells (PBMC) of HCC and displayed enhanced cytotoxic potentials than HDs. Finally, we investigated the functions and found that CD69+ Vδ1γδ T cells exhibited stronger tumor reactivities when challenged by tumor cells. CONCLUSIONS CD69+ Vδ1γδ T cells are functional Vδ1γδ T cell subsets in patients with HCC. Circulating CD69+ Vδ1γδ T cell is a promising candidate in immunotherapy of HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Male
- Female
- Middle Aged
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Tumor Microenvironment/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Adult
Collapse
Affiliation(s)
- Hongqin You
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yixin Wang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaokun Wang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Huifang Zhu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yajie Zhao
- Department of Breast, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Peng Qin
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xue Liu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Mengyu Zhang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaomin Fu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Benling Xu
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yong Zhang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zibing Wang
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Quanli Gao
- Department of Immunotherapy, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
3
|
Ishteyaque S, Singh G, Yadav KS, Verma S, Sharma RK, Sen S, Srivastava AK, Mitra K, Lahiri A, Bawankule DU, Rath SK, Kumar D, Mugale MN. Cooperative STAT3-NFkB signaling modulates mitochondrial dysfunction and metabolic profiling in hepatocellular carcinoma. Metabolism 2024; 152:155771. [PMID: 38184165 DOI: 10.1016/j.metabol.2023.155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκβ), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκβ and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION STAT3-NFκβ signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.
Collapse
Affiliation(s)
- Sharmeen Ishteyaque
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gurvinder Singh
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karan Singh Yadav
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar Sharma
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumati Sen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anurag Kumar Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Lahiri
- Pharmacology Division, CSIR - Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dnyaneshwar U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow-226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Madhav Nilakanth Mugale
- Division of Cancer Biology CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|